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We shall consider the nonlinear integral equation

(1) x(t) - x(0) +  f a(s)g(x(s)) ds = h(t),        0^<oo,

where a(t) and h(t) are continuous for J=iO and g(x) is continuous

for all x. If h(t) is absolutely continuous on bounded sets, then (1) is

equivalent to the differential equation

(2) S(0 + a(t)g(x.(t)) = h(t),

so our results will hold for solutions of (2). We shall be primarily

interested in the nonlinear oscillator, i.e. a(t)>0, xg(x)>0 for x^O,

but in Theorem III below, sign restrictions are removed.

If we consider h(t) to be a sample function of a Brownian motion

process h{t, u) on a probability space £2, we see the motivation for

considering (1). Equation (2) then represents a nonlinear oscillation

driven by "white noise," an illegitimate process in the sense that for

almost all wGO, h(t, u) is not differentiable.

For an account of the probabilistic aspects of (1) for the case in

which a(t) is constant, see [2]. We shall be concerned with bounds on

the asymptotic growth of solutions to (1). Various results for the

homogeneous case are found in [4], and [5]. Results for the non-

homogeneous case when a{t) is constant are obtained for (1) in [2]

and for (2) in [3].

Note that the usual local existence theorems which hold for (2)

may be obtained for (1) by considering the equivalent system of

equations

x(t) = u(t) + *(0,

-u{t) = a(t)g(x(t))

as in [2]. Here, of course, u(t) is defined to be x(/) —h{t).

The proofs and results of Theorems I and II are essentially the

same as those of Waltman in [4] for the homogeneous case, and de-

pend on the well-known lemma due to Gronwall [l, p. 37].

Theorem I. Suppose g(x) is a monotone nondecreasing odd function
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which is positive for x > 0 and continuous for all x. Suppose also that a(t)

is positive and absolutely continuous on bounded sets, and that

(3) I     | a'(s)\ /a(s)ds < oo.
J o

Let x{t) be a solution to (I) defined at t — 0. Then x(t) can be extended

to [0, oo), and

x(t) = o(t +    f    | h(s) I ds)

as t goes to infinity.

Proof. Condition (3) implies that a(t) is bounded below by some

positive number. In fact, the following is obvious:

Lemma I. With a(t) as above, supoaiST<«„ [a(i)/a(r)] is finite. Fur-

ther, let {Ti} be a nondecreasing sequence of positive numbers and let

ai = sup [a(t)/a(r)].

Then Yis-i «* < °° •

Let /3 = sup(io ait)-1. The theorem will follow easily from the next

lemma.

Lemma II. Let [A, B] be an interval on which x(t) is defined and such

that x(t)—h(t) does not change sign on this interval. Let

oia.b =      sup      [a(0/a(r)],
A^t<r£B

Ka.b = aA,B exp <   j      | a'(s) \ /a(s) ds> ,

Ma,b=  f    | h(s)\ds.
J A

Pick ju^O 50 that

f"g(s) ds = (2aA.B)-^(x(A) - h(A))\

Then

I x(B) |  ^ Ka.b( I x(A) | + M) + (2 + Ka.b)Ma,b.

Proof of Lemma II. Assume for definiteness that x(t)—h(t) is

nonnegative on [yl, 73]. Let
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77(0 =  f Ks) ds   and    y(t) = x(t) - H(t).
J A

Then

y(l) = - a(t)g(y(t) + H(t)) ^ - a{t)g(y(t) - MA,B).

Therefore, since y(t)^0 on [A, 73],

(4) y(t)2/2 =g y(A)2/2 -   f 'a(s)g(y(s) - MA<B)y(s) ds
J A

for A^t^B.

Set G(x) =fog(s)ds and note that G(x)>0 for x^O. Integrating

by parts in (4), we have

a(l)G(y(t) - Ma.b) ^ y{A)2/2 + a(A)G(y(A) - Ma.b)

+ '   <s)G(y(s) - MA,B) ds
J A      a(s)

for A^t^B. By Gronwall's inequality,

a(B)G(y(B) - Ma.b) ^ [j(A)2/2 + a{A)G(y{A) - MA,B]

■exp<   j     | a'(s) | AC5) ds> .

Recalling that g(x) is an odd, nondecreasing function, we see that

g(s) ds ^ Ka,b\0(y(A)2/2)aA,B + J^ g(s) <foj

/. \v(A)\+Ma.b+I>

^ KA,B J g(s) ds
J 0

where we use the fact that y(^4) =x(A) —h(A).

Now suppose p and q are positive numbers and X is a number ^ 1.

Suppose also that

/•* 1    r-ig(s) ds^ — I   g(s) ds.
o A  •/ o

Since g(x) is nondecreasing and positive for x>0, it follows that

p~^q/r\. From (5), then, we have

| y(B) |   g Ka.b( I y(A) |  + u) + (1 + Ka.b)Ma.b.
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Since \x(t)\ =\y(t)+H(t)\ g | y(t) \ +Ma,b and x(A) =y(A), the con-

clusion of Lemma II is immediate.

Now suppose there is a T^O such that x(2) can be extended past

T and such that in the largest interval [T, N), N ^ oo, to which x(t)

can be extended, x(t)—h(t) does not change sign. If 7V<oo, then

Lemma II applied to the closed sub-intervals of [7", TV) shows that

x(t) is bounded for t<N. Then (1) implies that x(t) is also bounded

for t <N. But this implies that x(t) can be extended to [0, TV], contra-

dicting the definition of N. Thus N= oo. Theorem I follows in this

case by applying Lemma II to finite intervals [T, t] and letting t go

to infinity.

If such a T does not exist, then there must be an unbounded set

of zeros of x(t) —h(t). In this case we define two disjoint sets S1 and

S2, with [0, oo) =5'US2, as follows:

51 = {t =i 0|   There is a neighborhood (a, b) of / in which x(-) — h(-)

has only a finite number of zeros}.

52 = {/ ^ O^CS1}-

If t£zS2, then there is a sequence ti approaching t with x(ti)—h(ti)

= 0. It follows that d(x(t)-h(t))/dt = 0 and by (1), x(t) =0.

For each ££S\ define 7( to be the intersection of [0, oo) with the

union of all neighborhoods of t in which x(-)—h(-) has only a finite

set of zeros. Supose first that for some h, 7(l, is semi-infinite. Then

there must exist an increasing and unbounded sequence { Ti} with

(-\Y(x(t)-h(t))^0on [Ti, Ti+i],i = \, 2, • • • .

Let yi = Kri,Ti+1 and note that x(Tt) =h(Ti). Lemma II implies

that for i = \, 2, • • •

| x(Ti+i) |   g 7<| *(Z\) |   + (2 + 7.)Mr>,ri+1.

Lemma I and condition 3 show that L = II<" i 7< is finite. It is

easy to show by induction that for ra = 2, 3, • • • ,

\<Tn)\   ^(f[y^\x(Ti)\  +3^n78)J  "\h(s)\ds

^ L | x(Ti) |   + 3Z, j      | h(s) | <fr,

and Theorem I follows easily in the same way as when x(t) —hit) does

not change sign for t ^ T.

Suppose, on the other hand, that It is bounded for each JGS1. If,

for some t^S1, It= [0, b), b<<x>, then [0, t] contains only a finite
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number of zeros of x(-)— h(-). The argument above shows that

| x(0 |  g £x( | x(0) | + | uo.t \) + 3Li f  | h(s) | ds
J o

where

g{s) ds = (2*A,B)-Wx{A) - h{A))2
J 0

7,i =        sup     a(f)/a(j)    exp <   I     | a'{s) \ /a{s) ds\

and oia.b and /3 are as on p. 41, for any B^A 2:0.

Finally, suppose that for some t, It—{a, b), a3^0, b< <x. Then

aGS2 and x(o)=0. For any c in (a, /)> [c, t] contains only a finite

number of zeros of x(-)—h(-). Therefore, as before,

| x(l) |  S Lx( | x(c) |  + | Me |) + 37.! j   | h(s) | ds.

Letting c approach a, we see that

| x(t) |   ^ 37,i j    | h(s) | ds.
J a

We have shown that there is an M such that for any

/ 1 0,     | x(t) | ^ Af + 3A f    | k(s) | ij,

and this completes the proof of Theorem I.

Theorem II. Suppose a{t) is positive, absolutely continuous on

bounded sets, and nondecreasing, and g{x) satisfies the same conditions

as in Theorem I. If x(t) is a solution to (I) defined at t = Q, then x(t) can

be extended to [0, °°) and there is a constant c such that

I x(t) |   ^ c + 3  f   | h(s) | ds,    all t ^ 0.
J o

Proof. Let [/I, B], H(t), MA,B and y(t) be as in Lemma II. Suppose

x(t)-h(t)^0on [A, 73]. Just as in Lemma II, if A^t^B,

a(l)G(y(t) - MA,B) g a(A)G(y(A) - Ma.b)

+ y(A)2/2 +  f ' ^-a(s)G(y(s) - MA,B) ds.
■J A    a{s)
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In this case, Gronwall's inequality implies that

a(B)G(y(B) - Ma,b) ^ [a(A)G(y(A) - Ma.b) + y(Ay/2]a(B)/a(A).

From this,

| y(B) |   g   | y(A) |  + n + 2Ma,b

where

f\(s)ds=(y(Ay/2)a(A)-\        M ̂ 0.

(The same result holds if x(t)-h(t) ^0 on [A, 73].)

Since |x(73)| g |y(73)| + Ma.b and x(A) =y(A),

\x(B)\  ^  \x(A)\  +» + 3Ma.b.

The rest of the proof of Theorem II proceeds much as that of Theo-

rem I and will be omitted.

We note that in both of these theorems, if h(t) is constant, then

all solutions are bounded. (See [4].) We conjecture that the bounded-

ness of all solutions to x+a(t)g(x) =0 is sufficient to insure that any

solution to (1) is O(l+fo\h(s)\ds) as t goes to infinity.

If a(t) is not bounded below by a positive number, then the con-

clusion of Theorem I does not hold. In fact, if f°°sa(s)ds<<x>, then

there is a solution to x-\-a(i)x = 0 which is asymptotic to a straight

line of positive slope [l, p. 103]. In this case, the following theorem

provides a bound in the (very restrictive) case |g(x)| ^&|x|a for

some constant k and a£[0, 1]. We can remove the restrictions on

the signs of a(t) and g(x) in this case.

We might comment here on a result in [5] to the effect that if

f*t"\a(t)\dt< oo and |g(x)| g&|x|a for some k and aS:0, then all

solutions to x+a(t)g(x) =0 have bounded derivatives. In fact, this is

false unless we restrict a to [0, l]. For example, with a{t) = — 2/t*,

g(x) =x2, the function x(t) =t2 is such a solution.

Theorem III. Suppose |g(x)| ^&|x| "for some k and somea£[0, l].

Suppose further that a(t) is continuous for t^O and (*) fot\a(t) \ dt< oo .

Let x(t) be any solution to (1) defined at t = 0. Then x(t) can be extended

to [0, oo), and x(t) = 0(t+t\ foh(s)ds\) as t goes to infinity.

Proof. We can write, as far as x(t) is defined,

x{t) = x(0) + /x(0) + f h(s) ds-  f (t- s)a(s)g(x(s)) ds,
J 0 J 0
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and if we let H(t)=foh(s)ds, then there are numbers c\ and c2 such

that

| x(t) |   + 1 ^ c, + c2t + \H(t) |

(6) +   f  (t- s)k\ a(s) | ( | *(*) |  + 1) ds.
J 0

Lemma III. Suppose that <p(t) is an integrable function on [0, T],

and for t in this interval,

4>{t) £ A(t)+ f (t - s)B(s)^>(s) ds,
J 0

where Bit) is continuous and nonnegative and A(t) is continuous. Let

z(t) be any solution to z — B(i)z = 0 which is positive for all t^O. Then

for

t G [0, r],    <b(t) g A(t) + z(l)  f   f A(u)B(u)z(u)/z(s)2 duds.
" 0    " 0

Proof of Lemma III. Let

R(t) =  I   (t- s)B(s)4>(s) ds.
Jo

Then R(t) = B(t)<p(t) gB(t)A(t)+B(t)R(t). Let

Qif) =   f B(s)z(s) ds + z(0).
•Jo

Then we have d[z(t)R(t)-Q(t)R(t)]/dt^B(t)A(t)z(t). Integrate, di-

vide by z(t) and multiply by exp{ — foQ(s)/z(s)ds}, and we obtain

jUif) exp j- f^Q(s)/z(s) d^ )

^ expj- j Q(s)/z(s)ds\ ■ f B(s)A(s)z(s)/z(t)ds.

The result follows by integrating again and noting that

Q(t) =   f B(s)z(s) ds + z(0) =   f z(s) ds + z(0) = z(t).
Jo " o

Now we note that condition (*) insures the existence of a solution

zx(t) to z(t)—k\a(t)\z(t)=0, with v gzx{t) gl for some 77 >0, all t^O.
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(See [l, p. 103].) Using Lemma III with (6) gives

|x(0| + l£c1+cJ+\H(t)\

+zi(0  j        - I   k\a(u)\zi(u)[ci+c2u+\H(u)\]duds
Jo     zi{s)2 J o

^ci+c2/+| 770)|

+ (W)  f (t-s) | a(s) | [ci+c2s+ | 77(5) | ] ds.
Jo

Clearly x(t) can be extended to [0, oo). For t> 1,

| x(t) 1  + 1

t + /1 770) I

^ — + c2 + 1 + (*/i»») I    f c21 a(s) \sds+  f   | a(5) | (Cl + 1) ds
I L Jo Jo

and the result follows from (*).
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