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1. Introduction. Eigenvalue problems will be considered for linear,

elliptic, self-adjoint partial differential operators on w-dimensional

Euclidean space En. A typical point in En will be denoted by

x = (x', x2, • • • , x"), and the Euclidean norm of x by |x|. Partial

differentiation with respect to x* will be denoted by Dit i = 1, 2, • • • , n.

Elliptic operators L defined by

(1.1) Lu = — )       S DfiaijDju) + bu> ,        atj = <z/8
C     \        i,j—l I

are to be considered when the coefficients a,-,-, b, and c are continuous

real-valued functions with &=^0, c>0 in En. The ellipticity of L im-

plies that the symmetric matrix (a,,) is everywhere positive definite.

A "solution" u of Lu = 0 is supposed to be of class C1 and all deriva-

tives involved in (1.1) are supposed to exist, be continuous, and satisfy

Lu = 0 at every point.

The eigenvalue problem for L on En will be called the basic prob-

lem. The only assumption to be made is that there exists at least one

eigenvalue X for this problem whose associated eigenfunctions are

"L-strongly asymptotic to zero" as x—>=° (definition in §2). Our pur-

pose is to obtain variational formulae for the eigenvalues and eigen-

functions of L when E" is perturbed to an w-disk of large radius a, and

the null boundary condition is adjoined on the bounding (« —1)-

sphere. If the eigenspace of X is w-dimensional, our first theorem

shows in particular that at least m eigenvalues of the perturbed prob-

lem converge to X as a—> °°. Our other results are refinements of this

which lead to asymptotic estimates for eigenfunctions. The method of

estimation used here is due to H. F. Bohnenblust.

The problem at hand of estimating eigenvalues and eigenfunctions

for large domains has its physical origin in certain models of enclosed

quantum mechanical systems, considered by a number of authors

including de Groot and ten Seldam [2], [12], Dingle [3], Hull and

Julius [6], Sommerfeld and Hartman [7]. In the case that the

Schrodinger operator (a special case of (1.1)) is separable, the prob-

lem reduces to a domain-perturbation problem for a singular second-
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order ordinary differential operator, for which various results have

been obtained [8], [9], [lO].

2. Basic and perturbed problems. Let Ra denote the w-disk

{x: |x| <a, a>0}, and let B= Badenote the bounding («—l)-sphere.

Let §, &a be the Hilbert spaces which are the Lebesgue spaces with

respective inner products defined by

{u, v) =        u(x)v(x)c(x) dx,        (u, v)a =   I    u{x)v(x)c{x) dx.
J En " Ra

The Hilbert norms will be denoted as usual by ||m[|, ||m||<i-

The basic eigenvalue problem for L is

(2.1) Lu = \u,        «G§,

where any eigenfunction is a solution of the differential equation in

the sense described in §1.

The perturbed domain T)a is defined as the set of all complex-valued

functions v which satisfy the following conditions:

(i) v is continuous on Ra;

(ii) v has uniformly continuous first partial derivatives in Ra;

(iii)  all derivatives of v involved in Lv exist and are continuous in

Ra\

(iv) v vanishes on Ba.

The perturbed eigenvalue problem under consideration is

(2.2) Lv = ixv, v G Sa-

lt is known [l ], [5] on account of the ellipticity of L on Ra that there

exists a denumerable set of eigenvalues {hj\ (0</ii^/i2^ • - • ) and

a corresponding complete orthonormal sequence of eigenfunctions Vj.

Green's function Ka(x, y) is constructed in the usual way as the sum

of a fundamental solution of Lv = 0 and the solution of a suitable

Dirichlet problem. If Ka is the linear integral operator whose kernel

is Green's function, the eigenfunctions Vj satisfy the integral equation

(2.3) Vj = /ijKaVj,       j = 1, 2, ■ • ■ ,

and any basic eigenfunction u satisfies LKau = u in Ra [l].

A parametrix is a nondecreasing continuous function <p in 0 <a < oo

such that lim <j>(a) = co(a—>oo). An L-indicator is a solution G of the

differential equation LG = 0 in En which is uniformly asymptotic to

some parametrix cp as x—><», i.e. G(x)~<p(\ x|) uniformly in En. A

function u is said to be L-strongly asymptotic to zero if there exists an

.L-indicator such that
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(2.4) lim  «(*)||G|||,|(G(*)||«|||,|)-' = 0
\x\—»»

uniformly in E".

It is not true in general that the eigenvalues n = u{a) of (2.2) tend

to limits as a—> =°, even when the spectrum of the basic problem is

entirely discrete. Easy counterexamples are provided in the case n = 1

when the singularity at o° is of the limit circle type in Weyl's classi-

fication [9]. Here we shall prove the convergence of the eigenvalues

ju(a) to basic eigenvalues under the assumption that all basic eigen-

functions are P-strongly asymptotic to zero.

As an example of (1.1), consider the Schrodinger operator L =

—A + &, where b(x) = \x\ 2+o(l) as |x|—► «>. Since b(x)—»°°, the

whole basic spectrum is discrete [13, p. 150]. A parametrix is <p(a)

_a-B/2 exp(a2/2), a> \fn/2, and every basic eigenfunction satisfies

(2.4).

3. Asymptotic estimates for eigenvalues. The eigenspace associ-

ated with a basic eigenvalue X will be denoted by Six. The following

notations will be used

*„[«] = 2hmax I «| jUGllateWNIa)-1        (« ̂  0)

(3.1)
*„ = sup *„[«];        Pa = 2X*,,/(1 - 2V-.).

«e?fx

Since every m(E2L has the form u= ^JL1 «»«» m terms of an ortho-

normal basis {Ui}, it is easy to verify that

\f/a S 2m max ^[m,].
l£i£m

It follows from (2.4) that \[/a — o(l) and p„ = o(l) as a—> qo .

Theorem 1. If X is a basic eigenvalue possessing m orthonormal eigen-

functions which are L-strongly asymptotic to zero, there exists a positive

number a0 such that at least m perturbed eigenvalues m(a) of (2.2) are

enclosed in the interval [X, X+p„] whenever a^Oo.

Proof. It follows from the maximum principle for elliptic differen-

tial equations [l, p. 326] that X>0. Let a = l/X. For every m£21x,

the function f=Kau—au is the solution of the Dirichlet problem

Lf = 0 in Ra,f= —au on Ba. Define

(3.2) g(x) = G(x)/<p(a);        F(x) = 2 (max | /1 J g(x) - f(x).
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Since G(x) ~<£( | x |) as x—* », there exists a positive number a0 such

that g(x) 2: | on Ba and 2\j/a < 1 whenever a 2: a0. Hence F(x) 2:0 on Ba,

and it follows from the maximum principle that F(x) 2:0 throughout

Ra, or

f(x) g 2 (max |/|jg(x),        x G Ra.

Similarly

/(x)2: -2 (max |/| )*(*),        x G Ra,

and consequently

11/11. g 2a (max | u \ \ \\G\\a/<p{a),

or by (3.1),

(3.3) \\Kau — au\\a g 2a^a||«||<1.

Let P(e) be the projection operator from §<, onto the subspace

%ai spanned by all eigenfunctions of Ka whose corresponding eigen-

values j3j lie in the interval |/3 — a\ <e. The following inequality is

valid for arbitrary mGSIx

||« - P(e)«||. ^ e-l\\Kau - au\\a.

The proof given in [ll ] for self-ad joint transformations extends with-

out change to Ka- Then (3.3) yields the inequality

(3.4) \\u - P(e)u\\a :g 2a*ae-1||w||0,

which implies that at least m eigenvalues /3, of Ka are included in the

interval |/3,-—a\ ^2copa, i—1, 2, • • • [ll, p. 35]. Since a, |8,- are

reciprocals of X, ju,- respectively, at least m eigenvalues ya of the per-

turbed problem (2.2) satisfy \Hi— X| ^2fi^0. Since /i,-2:X is a general

consequence of the minimax principle for eigenvalues [l], X^ju.fSX

+ 2iMtif/a, or X^ju,-^X/(1—2i/'a)=X-r-pfl, where pa is defined by (3.1).

This completes the proof of Theorem 1.

Theorem 2. Let \bea basic eigenvalue of multiplicity m whose eigen-

functions are all L-strongly asymptotic to zero. If there exists a basic

eigenvalue exceeding X, then there is a positive number ai such that

exactly m perturbed eigenvalues \ii are enclosed in the interval [X, X+pa]

whenever a^a\.
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Proof. Suppose first that X is the smallest basic eigenvalue. Let

X' be the smallest eigenvalue exceeding X. Since \pa = o(l) as a—»<»,

there is a number ai^a0 such that ir'a<(X' — X)/2X' whenever a^ai,

which implies X+pa<X'. Then theorem 1 shows that at least m eigen-

values Ui are included in the subinterval [X, X+p0] of [X, X']. Since

yu.^X, for each i is a general consequence of the minimax property of

eigenvalues, at most m eigenvalues p.; lie in this subinterval, and

hence exactly m. If X=X' is the ith distinct basic eigenvalue, X1

<X2 < • • • , an easy induction proof establishes the same result.

4. Uniform estimates for eigenfunctions. Let p = p(n) be a positive

number satisfying p(2)—0, p(3)=0, and 0<w —2p<4. Because the

fundamental singularity of Ka(x, y) is of order \x — y\ 2~", w^3, the

function

ka(x) = (   I    | x - y | PKa(x, y)c(y) dyj

is well-defined in Ra. Our assumption for the next theorem is that

(4.1) ^0ka(x) = o(l)    as    a—* oo   (q = (n — 2p)/n)

uniformly in Ra, where \pa is defined by (3.1). In the case n — \, p = 0

considered in [10, p. 310], ka(x) is uniformly bounded in P0 for

a^Oo, and accordingly (4.1) is implied by (2.4).

Theorem 3. Corresponding to the eigenvalues X and p, of Theorem 2,

there are orthonormal eigenfunctions Ui associated with X and Vi associ-

ated with the Ui such that

Vi(x)   =   Ui{x)   — fi(x)   +  Otya)ka{x),

i = 1, 2, • • • , m;        x £ Ra;        a S: a1?

where /< is the solution of the Dirichlet problem Lf{ = 0 in Ra, ft = Ui on

Ba.

Proof. Select the number e in (3.4) to be a —a', where a = l/X,

a' = l/X'. With ai as in Theorem 2, it follows that 2o^0<a(X'-X)/X'

= a — a' = e for a^ai. Then goe is w-dimensional by Theorem 2 and

P(«)m=0 implies w = 0 by (3.4). Hence there exist m uniquely deter-

mined linearly independent eigenfunctions z, corresponding to a

which P(e) maps into the orthonormal eigenfunctions vit and by (3.4),

||z.- —»i||o = OW'o). Since



1966] ENCLOSURE THEOREMS OF ELLIPTIC OPERATORS 23

by the Schwarz inequality, (z,-, zy)o = 5;y+0(i/y), i, j = l, 2, ■ • ■ , m.

Since the z, are linearly independent, an orthonormal sequence {ui\

can be constructed by the Schmidt process as linear combinations of

the zit and it is seen without difficulty that ||mj —zJ||„ = 0(^'„). Hence

(4.3) \\ui — v\\a = 0(yf/a),       i — 1, 2, • • • , m.

Omitting the subscripts i, we select a typical u in the set {ui\ and

corresponding v in the set {v(}. Since /i — X = 0(^o) by Theorem 2 and

\\v — «|| 0 = 0(^0) by (4.3), we obtain

\\ixv — Xu\\a 2= m||» — M||a + (m — ^)||«||« = 0(^a).

Define

wa{x) = ( I   I * _ y h2p I M»Cy) - xwGO |2c(y) <tyj   .

Let 5(x, 5) denote the w-disk of centre x and radius 5. A routine de-

composition of the integral into integrals over 5(x, 5)r\Ra and the

remainder of Ra yields

2/ —2pj■ ii 2 n—2j>

Wo(x) ^ 5     \\fiv — Xm||0 + 0(5      ).

With the choice b=ipa,n we obtain the uniform estimate wa(x)

= 0{ypa), where 0<q = (n — 2p)/n<i/n. In particular, wa{x)=0{ypa)

if w = 2 or 3. Since

v(x) — \Kau(x) = Ka(jiV — X«)(x),

it follows from Schwarz's inequality that

(4.4) | v(x) - \Kau(x) |   :g ka(x)wa(x) = Otya)ka{x).

The function g defined by

(4.5) g{x) = \Kau(x) — u(x) +f(x)

is a solution of the Dirichlet problem Lg = 0 in Ra, g = 0 on Ba, and

hence g is identically zero. The uniform estimate (4.2) is then a con-

sequence of (4.4) and (4.5).

5. Asymptotic variational formulae for eigenvalues. We shall re-

quire Green's symmetric identity in the form [4]

(5.1) (LU,  V)a  —   («,  Lv)a   =   [uv]a  —   [vu]a  =   {uv) a,

where
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[uv]a =   I    «   ]C  akjnkDfidS
JBa     k,j=l

and {uv\a is defined by (5.1). Here (nk) is the outward pointing unit

normal to Ba.

Let u, v be normalized eigenfunctions associated with X, p, as de-

scribed in Theorems 2 and 3. Let / be the solution of the Dirichlet

problem P/=0 in Ra, f = u on Ba.

Since D = Oon Ba, [j>m]o = 0. Then application of (5.1) to the differ-

ential equations Lu—\u and Lv = uv leads to the formula

(5.2) (X - u)(u, v)a = Ma-

It is a consequence of (4.3) that

|  (U, V)a ~   (U, U)a |    ^  ||«||a||V - U\\a  =  Otya).

Hence (u, v)a=\+Otya) and (5.2) yields

(5.3) X-p = [«»].[1 + 0(*.)].

Application of (5.1) to the differential equations Lu=\u, Lv = uv, and

Lf=0 leads to

(5.4) -u{f, v)a = [/»]„ = [uv]a;

(5.5) -X</, «)a = {/«}«•

Since u=\+0^a) by Theorem 2, it follows from (5.3) and (5.4) that

X - p = - X</, i>.[l + 0(*.)].

Finally we appeal to the uniform estimate (4.2) and to (5.5) to obtain

X - p =[{/«}„ - X</,/).][! + OGMl + </, *.>.0(*").

In some cases the first term dominates the other terms, and we obtain

the asymptotic form

(5.6) p(fl)—X~{«/}0    as   a—» <».

The results of Theorems 1-3 are then sharpened accordingly.

In the example considered at the end of §2, some of the basic eigen-

functions are asymptotic to radial functions P(| x\) (explicit formulae

in [13]). In such cases, f(x)~R(a)<l>(\x\)/4>(a), and (5.6) yields the
eigenvalue variation u(a) — X~co„_ian| R(a) |2, where w„_i denotes the

volume of the unit (« — l)-sphere.
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