WEAK COMPACTNESS IN LOCALLY CONVEX SPACES

J. D. PRYCE

1. **Introduction.** A recently published paper of R. C. James [1] proves the following Theorem: A weakly closed set C in a Banach space B is weakly compact if and only if every bounded linear functional on B attains its supremum on C at some point of C. The proof given by James is rather long and involved: the following, while not employing any basically different ideas, is a simpler version and extends the theorem with no extra effort to deal with a locally convex linear topological space rather than a Banach space, using the Eberlein criterion for weak compactness (see e.g. [2, p. 159]).

2. The result.

THEOREM. Let C be a weakly closed bounded subset of the real and complete locally convex linear topological space E. Then C is weakly compact if and only if given any element f of the dual E^* of E, there is $x \in C$ such that $f(x) = \sup\{f(u) : u \in C\}$.

COROLLARY. The hypothesis that E be complete may be replaced by the hypothesis that the closed convex hull of C be complete (in the original topology of E).

PROOF. The implication one way is elementary: namely, suppose C is weakly compact and f any element of E^* . Then by the definition of the weak topology f is continuous on C in the weak topology and so attains its bounds.

We prove the implication the other way by assuming that C is not weakly compact, and constructing a continuous linear functional which does not attain its supremum on C at any point of C. The proof of this fact is divided up into a series of lemmas.

LEMMA 1. There is a sequence (z_n) of points in C and a sequence (f_n) of elements of E^* such that $\{f_n\}$ is an equicontinuous set and the limits $\lim_i \lim_i f_i(z_i)$ and $\lim_i \lim_i f_i(z_i)$ exist and are unequal.

For the proof of this result, which is Eberlein's celebrated compactness theorem, see [2], where the result is stated on p. 159.

We now introduce some notation. Since we shall not be dealing only with functionals on E that are linear, we denote by F the set of all real-valued continuous functions on E which are positive-homogeneous,

Received by the editors March 1, 1965.

$$f(\alpha x) = \alpha f(x) \qquad (\alpha \ge 0).$$

Since for each $f \in F$, there is a neighbourhood U of 0 in E such that $|f(x)| = |f(x) - f(0)| \le 1$ $(x \in U)$, elements of F are bounded on bounded sets. Note that E^* is a subspace of F. We give F the weak* topology w(F, E) a pointwise convergence on E; this makes E^* a weak*-closed subspace.

We define

$$p(f) = \sup\{f(x) \colon x \in C\} \qquad (f \in F).$$

The functional p is finite-valued and has the following properties:

(i) p is sublinear, i.e. $p(\lambda f) = \lambda p(f)$ for $\lambda \ge 0$ and

$$p(f+g) \le p(f) + p(g).$$

(ii) Since

$$p(f) \le p(g) + p(f - g)$$

and

$$p(g) \le p(f) + p(g - f)$$

we have

$$-p(g-f) \le p(f) - p(g) \le p(f-g).$$

(iii) If $A \subseteq F$ and A is equicontinuous then p is bounded on A, for there is a neighbourhood U of 0 in E such that $|f(x)| \le 1$ for all $x \in U$, $f \in A$, and C is absorbed by U.

We also define $P(f) = \sup \{ |f(x)| : x \in C \}$ for $f \in F$. The functional P is a seminorm inducing on F the topology of uniform convergence on C.

Let (f_i) be a sequence in F which is equicontinuous at each point of E, and define functions $G_- = \liminf f_i$, $G^- = \limsup f_i$ by

$$G_{-}(x) = \liminf_{i \to \infty} f_{i}(x), \qquad G^{-}(x) = \limsup_{i \to \infty} f_{i}(x) \qquad (x \in E).$$

Given x_0 and ϵ there is a neighbourhood U of x_0 such that

$$\sup\{|f_i(x)-f_i(x_0)|: i=1,2,\cdots; x\in U\} \leq \epsilon.$$

Applying this and the relation $|\liminf f_i(x) - \liminf f_i(x_0)|$ $\leq \sup_i |f_i(x) - f_i(x_0)|$ first to 0 and then to an arbitrary x_0 we see that G_- , and similarly G_- , is everywhere finite and continuous. It is clearly positive-homogeneous and so belongs to F.

LEMMA 2. Let (f_i) be a sequence in F equicontinuous at each point. Let the topology on F be that of the seminorm P, and let X be any subset of F which is separable in the relative topology. Then there is a subsequence (G_i) of the f_i such that if $G_-=\lim\inf G_i$, $G^-=\lim\sup G_i$, we have $p(f-G_-)=p(f-G^-)$ for all $f\in X$.

PROOF. Let (ω_k) be a dense sequence in X. By replacing it by the sequence $\omega_1, \omega_1, \omega_2, \omega_1, \omega_2, \omega_3, \omega_1, \omega_2, \omega_3, \omega_4, \cdots$, we can assume that each point of X is a cluster point of the sequence. We now apply a diagonal process, inductively defining points x_n and sequences $(f_i^n: i=1, 2, \cdots)$ as follows:

For n = 1 choose $x_1 \in C$ so that

$$\omega_1(x_1) - \liminf_i f_i(x_1) > p(\omega_1 - \liminf_i f_i) - \frac{1}{2}$$

while for n > 1 choose $x_n \in C$ so that

$$\omega_n(x_n) - \liminf_i f_i^{n-1}(x_n) > p\left(\omega_n - \liminf_i f_i^{n-1}\right) - 2^{-n},$$

and $(f_i^n: i=1, 2, \cdots)$ as a subsequence of $(f_i^{n-1}: i=2, 3, \cdots)$, so that

$$f_i^n(x_n)$$
 converges to $\liminf_i f_i^{n-1}(x_n)$ as $i \to \infty$.

(Note that f_1^{n-1} thus does not occur as a member of (f_i^n) .) Now define $G_k = f_1^k$. Since (G_n, G_{n+1}, \cdots) is for each n a subsequence of (f_1^n, f_2^n, \cdots) we have, if G_-, G^- denote $\lim \inf G_k$, $\lim \sup G_k$, for every n,

(i)
$$\lim_{k} G_k(x_n)$$
 exists and equals $\lim_{i} f_i^n(x_n)$;

(ii)
$$\omega_n(x_n) - G_-(x_n) = \omega_n(x_n) - \lim_{i} f_i^n(x_n) = \omega_n(x_n) - \lim_{i} \inf f_i^{n-1}(x_n)$$

 $> p\left(\omega_n - \lim_{i} \inf f_i^{n-1}\right) - 2^{-n}$
 $\geq p\left(\omega_n - \lim_{i} \inf G_k\right) - 2^{-n} = p(\omega_n - G_-) - 2^{-n}.$

Now let f be an element of X. Because of the cluster point property of the ω_k , given any $\epsilon > 0$ there is n such that (i) $2^{-n} < \epsilon$ and (ii) for all x in C, $|f(x) - \omega_n(x)| < \epsilon$. Then we have

$$p(f - G_{-}) \leq \epsilon + p(\omega_{n} - G_{-})$$

$$< 2\epsilon + \omega_{n}(x_{n}) - G_{-}(x_{n})$$

$$= 2\epsilon + \omega_{n}(x_{n}) - G^{-}(x_{n})$$

$$< 3\epsilon + f(x_{n}) - G^{-}(x_{n})$$

$$\leq 3\epsilon + p(f - G^{-}).$$

Since ϵ is arbitrary we have $p(f-G_-) \leq p(f-G^-)$; the opposite inequality is trivial and hence $p(f-G_-) = p(f-G^-)$. This proves the lemma.

Let (f_i) now be the sequence of Lemma 1 and X be the linear span of the f_i . In the P topology X is separable (e.g. take linear combinations of the f_i with rational coefficients), so the conditions of Lemma 2 are satisfied, and we can by taking a subsequence assume that

$$p(f-G_{-})=p(f-G_{-}) \qquad (f\in X),$$

where $G_{-}=\lim\inf f_{i}$, $G^{-}=\lim\sup f_{i}$. The double limit relation of Lemma 1 is not disturbed by this process. Further we can without loss of generality assume that $f_{k}(z_{j})-\lim_{i}f_{i}(z_{j})$ is for each k eventually $\geq r>0$, as j tends to infinity, (by another application of the diagonal process).

Let K_n denote the convex hull of $\{f_n, f_{n+1}, \dots \}$ for $n = 1, 2, \dots$. To keep the record straight, we have $F \supseteq E^* \supseteq X \supseteq K_1 \supseteq K_2 \supseteq \dots$.

LEMMA 3. For all
$$f \in K_1$$
, $p(f-G_-) \ge r$.

PROOF. Let f be any element of K_1 ; then $f = \sum_{i=1}^{s} \lambda_i f_{n_i}$, where $\lambda_i \ge 0$, and $\sum_{i=1}^{s} \lambda_i = 1$. Then

$$p(f - G_{-}) \ge f(z_{j}) - G_{-}(z_{j}) = \sum_{1}^{s} \lambda_{i} \left\{ f_{n_{i}}(z_{j}) - G_{-}(z_{j}) \right\}$$

$$= \sum_{1}^{s} \lambda_{i} \left\{ f_{n_{i}}(z_{j}) - \lim_{r} f_{r}(z_{j}) \right\}$$

$$\ge \sum_{1}^{s} \lambda_{i} r = r$$

if we choose j large enough.

LEMMA 4. Let Y be a linear space, and ρ , β , β' be strictly positive numbers. Let A be a convex subset of Y, u a point of Y, and ρ a sublinear functional on Y. Suppose that

$$\inf_{a\in A}p(u+\beta a)>\beta \rho+p(u).$$

Then there is a point a_0 in A such that

$$\inf_{b\in A}p(u+\beta a_0+\beta'b)>\beta'\rho+p(u+\beta a_0).$$

PROOF. Choose any x, y in A and set $c = (\beta x + \beta' y)/(\beta + \beta')$. Then $c \in A$ and $u + \beta x + \beta' y = u + (\beta + \beta')c = (1 + \beta'/\beta)(u + \beta c) - (\beta'/\beta)u$. From the hypothesis of the lemma,

$$-p(u) = \beta \rho - \inf_{a \in A} p(u + \beta a) + \delta \qquad (\delta > 0)$$

and by sublinearity,

$$p(u + \beta x + \beta' y) \ge p((1 + \beta'/\beta)(u + \beta c)) - p((\beta'/\beta)u).$$

Hence for fixed a_0 in A,

$$\inf_{b\in A}p(u+\beta a_0+\beta' b)$$

$$\geq \left(1 + \frac{\beta'}{\beta}\right) \inf \left\{ p(u + \beta c) : c = \frac{\beta a_0 + \beta' b}{\beta + \beta'}, b \in A \right\} - \frac{\beta'}{\beta} p(u)$$

$$\geq \left(1 + \frac{\beta'}{\beta}\right) \inf_{a \in A} p(u + \beta a) - \frac{\beta'}{\beta} p(u)$$

$$= \left(1 + \frac{\beta'}{\beta}\right) \inf_{a \in A} p(u + \beta a) + \frac{\beta'}{\beta} \left(\beta \rho - \inf_{a \in A} p(u + \beta a)\right) + \frac{\beta'}{\beta} \delta$$

$$= \beta' \rho + \inf_{a \in A} p(u + \beta a) + \frac{\beta'}{\beta} \delta.$$

Thus if we choose a_0 so that $p(u+\beta a_0) < \inf_{a \in A} p(u+\beta a) + (\beta'/\beta)\delta$ we obtain the required result.

LEMMA 5. Let (β_n) be an arbitrary sequence of strictly positive real numbers. Then there is a sequence (g_n) in F such that for all n, $g_n \in K_n$ and

$$p\left[\sum_{i=1}^{n}\beta_{i}(g_{i}-G_{-})\right]>\frac{1}{2}\beta_{n}r+p\left[\sum_{i=1}^{n-1}\beta_{i}(g_{i}-G_{-})\right].$$

PROOF. We use induction and Lemma 4.

For the first step, let u=0, $\beta=\beta_1$, $\beta'=\beta_2$ and A be the set $K_1-G_-=\{f-G_-:f\in K_1\}$; and p as already defined. Then $\inf_{f\in A} p(u+\beta f)=\inf_{f\in K_1}p\left[\beta_1(f-G_-)\right]\geq \beta_1r>\frac{1}{2}\beta_1r+p(u)$ by Lemma 3, so the conditions of Lemma 4 are satisfied. Hence there is $g_1\in K_1$ such that

$$\inf_{g \in K_1} p[\beta_1(g_1 - G_-) + \beta_2(g - G_-)] > \frac{1}{2}\beta_2 r + p[\beta_1(g_1 - G_-)].$$

For the *n*th step, let $u = \sum_{i=1}^{n-1} \beta_i(g_i - G_-)$, $\beta = \beta_n$, $\beta' = \beta_{n+1}$ and A be the set $K_n - G_-$. By the inductive hypothesis, and since $K_{n-1} \supseteq K_n$,

$$\inf_{f\in A} p(u+\beta f) \geq \inf \{p(u+\beta f): f\in K_{n-1}-G_{-}\} > \frac{1}{2}\beta_n r + p(u)$$

and Lemma 4 gives $g_n \in K_n$ such that if $v = \sum_{i=1}^n \beta_i(g_i - G_-)$,

$$\inf_{f\in A} p(v+\beta'f) > \frac{1}{2}\beta'r + p(v)$$

which is the inductive hypothesis for n. The sequence (g_n) then has the required property.

LEMMA 6. There is G_0 in E^* such that

- (i) $\lim \inf g_n(x) \leq G_0(x)$ $(x \in E)$,
- (ii) $p(h-G_0) = p(h-G_-)$ $(h \in X)$.

PROOF. The set K_1 is the convex hull of the equicontinuous sequence (f_n) , and thus the weak*-closure of K_1 in E^* is weak*-compact. The sequence (g_n) lies in K_1 and therefore has a weak* cluster-point G_0 in E^* . Then for each x in E, $G_0(x)$ is a cluster-point of the real number sequence $(g_n(x))$, and so

$$\lim\inf g_n(x) \leq G_0(x) \leq \lim\sup g_n(x),$$

which establishes (i).

Next, since $g_n \in K_n$, $g_n(x)$ is a convex combination $\sum \lambda_i f_{m_i}(x)$, with the m_i not less than n. It follows that there is at least one of the m_i for which $f_{m_i}(x) \leq g_n(x)$. In other words, given any n there is $m \geq n$ such that

$$f_m(x) \leq g_n(x),$$

and so $G_{-}(x) = \lim \inf f_{n}(x) \leq \lim \sup g_{n}(x)$.

A similar argument on the other side establishes $G^-(x) \ge \limsup g_n(x)$. Combining our inequalities we have $G_-(x) \le G_0(x) \le G^-(x)$, $(x \in E)$ and so

$$p(h - G_{-}) \ge p(h - G_{0}) \ge p(h - G^{-})$$
 $(h \in X)$.

The outer terms are equal and the lemma is proved.

COROLLARY. The conclusion of Lemma 5 holds with G_{-} replaced by G_{0} .

PROOF. Fix n and let $\alpha = \beta_1 + \cdots + \beta_n$. Then

$$p\left[\sum_{1}^{n}\beta_{i}(g_{i}-G_{0})\right] = \alpha p\left[\frac{1}{\alpha}\sum_{1}^{n}\beta_{i}g_{i}-G_{0}\right] = \alpha p\left[\frac{1}{\alpha}\sum_{1}^{n}\beta_{i}g_{i}-G_{-}\right]$$
$$= p\left[\sum_{1}^{n}\beta_{i}(g_{i}-G_{-})\right],$$

and the result is now clear.

LEMMA 7. If the sequence (β_n) decreases to zero fast enough (more precisely if $(\sum_{n=1}^{\infty} \beta_i)/\beta_n \rightarrow 0$ as $n \rightarrow \infty$), the series

$$\sum_{i=1}^{\infty} \beta_i (g_i - G_0)$$

defines an element g of E* which does not attain a maximum on C.

PROOF. Assume to start with only that $\sum \beta_i$ converges. Now K_1 , hence also K_1-G_0 , is equicontinuous; hence there is a neighbourhood U of 0 in E such that

$$x \in U \Rightarrow |f(x)| \leq 1$$
 for all $f \in K_1 - G_0$.

Hence

$$x \in U \Rightarrow \sum_{i=1}^{\infty} \beta_i [g_i(x) - G_0(x)] \leq \sum_{i=1}^{\infty} \beta_i.$$

This shows that g is defined and continuous on E, i.e. $g \in E^*$. Now by the note (iii) after the definition of p, there is $M \ge 0$ such that

$$x \in C$$
, $f \in K_1 - G_0 \Rightarrow |f(x)| \leq M$.

Suppose that g attains its supremum on C at some point u of C. Then for each n, we have

$$\sum_{1}^{n} \beta_{i}(g_{i} - G_{0})(u) = g(u) - \sum_{n+1}^{\infty} \beta_{i}(g_{i} - G_{0})(u) \geq g(u) - M \sum_{n+1}^{\infty} \beta_{i}$$

$$= p(g) - M \sum_{n+1}^{\infty} \beta_{i} \geq p \left[\sum_{1}^{n} \beta_{i}(g_{i} - G_{0}) \right]$$

$$- p \left[\sum_{1}^{n} \beta_{i}(g_{i} - G_{0}) - g \right] - M \sum_{n+1}^{\infty} \beta_{i}$$

$$\geq p \left[\sum_{1}^{n} \beta_{i}(g_{i} - G_{0}) \right] - 2M \sum_{n+1}^{\infty} \beta_{i}$$

$$> \frac{1}{2} \beta_{n}r + p \left[\sum_{1}^{n-1} \beta_{i}(g_{i} - G_{0}) \right] - 2M \sum_{n+1}^{\infty} \beta_{i}$$
by Lemma 6 (Corollary)
$$\geq \frac{1}{2} \beta_{n}r + \sum_{i=1}^{n-1} \beta_{i}(g_{i} - G_{0})(u) - 2M \sum_{i=1}^{\infty} \beta_{i}.$$

Hence

$$(g_n-G_0)(u)>\frac{1}{2}r-2M\left(\sum_{n=1}^{\infty}\beta_i\right)/\beta_n.$$

If we choose (β_n) to decrease fast enough, for instance $\beta_n = 1/n!$, we find that $\lim_{n \to \infty} (g_n - G_0)(u) \ge \frac{1}{2}r$, which contradicts the fact that

lim inf $g_n(u) \leq G_0(u)$. Hence g cannot attain its supremum on C at any point of C, and the theorem is proved.

The author's thanks are due to Professor James for providing a copy of his proof and some related papers on weak compactness that have recently been, or are due to be published.

BIBLIOGRAPHY

- 1. R. C. James, Weakly compact sets, Trans. Amer. Math. Soc. 13 (1964), 129-140.
- 2. J. L. Kelley and I. Namioka, Linear topological spaces, Van Nostrand, Princeton, N. J., 1963.
- 3. W. F. Eberlein, Weak compactness in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 51-53.
 - 4. R. C. James, Characterizations of reflexivity, Studia Math. 23 (1964), 205-216.

University of Newcastle upon Tyne, England