
WEAK COMPACTNESS IN LOCALLY CONVEX SPACES

J. D. PRYCE

1. Introduction. A recently published paper of R. C. James [l]

proves the following Theorem: A weakly closed set C in a Banach

space B is weakly compact if and only if every bounded linear func-

tional on B attains its supremum on C at some point of C. The proof

given by James is rather long and involved: the following, while not

employing any basically different ideas, is a simpler version and ex-

tends the theorem with no extra effort to deal with a locally convex

linear topological space rather than a Banach space, using the Eber-

lein criterion for weak compactness (see e.g. [2, p. 159]).

2. The result.

Theorem. Let C be a weakly closed bounded subset of the real and

complete locally convex linear topological space E. Then C is weakly

compact if and only if given any element f of the dual E* of E, there is

xEC such that fix) — sup {/(ra) :uEC\.

Corollary. The hypothesis that E be complete may be replaced by

the hypothesis that the closed convex hull of C be complete (z'ra the original

topology of E).

Proof. The implication one way is elementary: namely, suppose C

is weakly compact and/any element of E*. Then by the definition of

the weak topology / is continuous on C in the weak topology and so

attains its bounds.

We prove the implication the other way by assuming that C is not

weakly compact, and constructing a continuous linear functional

which does not attain its supremum on C at any point of C. The proof

of this fact is divided up into a series of lemmas.

Lemma 1. There is a sequence (z„) of points in C and a sequence (/„)

of elements of E* such that {/„} is an equicontinuous set and the limits

lim, lim,-/i(z,-) and limy lim,-/<(zy) exist and are unequal.

For the proof of this result, which is Eberlein's celebrated com-

pactness theorem, see [2], where the result is stated on p. 159.

We now introduce some notation. Since we shall not be dealing

only with functionals on E that are linear, we denote by F the set of

all real-valued continuous functions on E which are positive-homo-

geneous,
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f(ax) = af(x) (a ^ 0).

Since for each /G P there is a neighbourhood U of 0 in E such that

l/(*)| = |/(*)— /(0)| =1 (*GP), elements of P are bounded on
bounded sets. Note that E* is a subspace of P. We give P the weak*

topology w(F, E) a pointwise convergence on P; this makes E* a

weak*-closed subspace.

We define

p(f) = sup{f(x):xEC} (fEF).

The functional p is finite-valued and has the following properties:

(i) p is sublinear, i.e. p(\f) =~Xp(f) for X^O and

P(f + g) ̂  P(f) + P(g)-

(ii) Since

P(f) ̂  P(g) + P(f~ g)
and

P(g) ̂ P(f) + P(g~f)
we have

~P(g ~ /) ^ P(f) ~ P(g) ̂  P(f ~ g)-

(iii) If AQFand A is equicontinuous then p is bounded on A, for

there is a neighbourhood U of 0 in E such that |/(x)| gl for all

xEU, fEA, and C is absorbed by P.
We also define P(/)=sup{ |/(x)| : xGC} for/GP The functional

P is a seminorm inducing on F the topology of uniform convergence

on C.

Let (fi) be a sequence in F which is equicontinuous at each point

of E, and define functions GL = lim inf /,-, G_ = lim sup/< by

G_(x) = lim inf/•(*)>        G~(x) = lim sup/<(x)        (x G P)-

Given x0 and e there is a neighbourhood U of x0 such that

sup{ |/,(x) - fi(xo) | : i = 1, 2, • • - ; x E U) g e.

Applying this and the relation | lim inf /,(x) — lim inf/,(x0) |

^ sup,- |/<(x) —fi(xo) | first to 0 and then to an arbitrary x0 we see that

G-, and similarly G~, is everywhere finite and continuous. It is clearly

positive-homogeneous and so belongs to P.

Lemma 2. Let (/,) be a sequence in F equicontinuous at each point.

Let the topology on F be that of the seminorm P, and let X be any subset

of F which is separable in the relative topology. Then there is a subse-
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quence (G.) of the fi such that if G_ = lim inf d, G_ = lim sup Gi, we

have pif-GJ) =p(J-G~) for all f EX.

Proof. Let (<ot) be a dense sequence in X. By replacing it by the

sequencewi, wi, W2, Wi, o>j,W3,wi, W2,W3,W4, • • -, we can assume that each

point of X is a cluster point of the sequence. We now apply a diagonal

process, inductively defining points x„ and sequences (/J1: t = l, 2, • ■ •)

as follows:

For w = 1 choose Xi EC so that

<<>i(xi) — lim inf/<(xi) > pii^i — lim inf/,) — \,

while for ra > 1 choose x„ E C so that

u>nixn) — lim inf/i    (x„) > p lain — lim inf/,    j — 2    ,

and (j?:* = l, 2, • • • ) as a subsequence of (Jf~1:i = 2, 3, • ■ • ), so

that

fiixn) converges to lim inf/,    (x„)    asi—►<».
i

(Note that/7-1 thus does not occur as a member of (/?)■) Now define

Gk=fi- Since (G„, G„+i, • • • ) is for each ra a subsequence of

(/?, /?> ' • ' ) we have, if G_, G~ denote lim inf Gk, lim sup Gt, for

every ra,

(i) lim G*(x„) exists and equals lim /<(x„);

(ii)  u)„(x„) — G_(x„) = con(x„) — lim/,(x„) = u)„(x„) — lim inf fi   (x„)

> p I con — lim inf/,     J — 2

^ /> f co„ - lim inf G*\ - 2~n = />(co„ - G_) - 2~".

Now let/be an element of X. Because of the cluster point property of

the cok, given any e>0 there is « such that (i) 2_n<e and (ii) for all

x in C, |/(x) —wn(x)| <e. Then we have

pif - G_) g e + pio>n - G_)

< 2e + w„(x„) — G_(x„)

= 2e + co„(x„) — G~(x„)

< 3e + fixn) - G-(x„)

^ 36 + pif - G~).
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Since e is arbitrary we have p(f—G-)^p(f—G~); the opposite in-

equality is trivial and hence p(f—G-)=p(f—G~). This proves the

lemma.

Let (/,-) now be the sequence of Lemma 1 and X be the linear span

of the/,. In the P topology X is separable (e.g. take linear combina-

tions of the/i with rational coefficients), so the conditions of Lemma 2

are satisfied, and we can by taking a subsequence assume that

p(f - G_) = p(f - G~) (fEX),

where G_ = lim inf /,, G~ = lim sup /,. The double limit relation of

Lemma 1 is not disturbed by this process. Further we can without

loss of generality assume thatfk(zA —lim,- fi(zA is for each k eventually

2:r>0, as j tends to infinity, (by another application of the diagonal

process).

Let K„ denote the convex hull of {/„,/n+i, • ■ • } for n = 1, 2, • •

To keep the record straight, we have F3P*3^3Pi3P22 • • • •

Lemma 3. For all /GPi, p(f-G-) =r.

Proof. Let / be any element of Kx; then /= ^J_i X,/B,, where

X.^0, and £1X1 = 1. Then

p(f-G.) fc/fo) - G_fe) = Zx,{/B<(Zy) - G-(zj)}

= i>i{/B,(z,) -Hm/,(%)}

^ Z V = r
1

if we choose _;' large enough.

Lemma 4. Let Y be a linear space, and p, j3, /3' be strictly positive

numbers. Let A be a convex subset of Y,ua point of Y, and p a sublinear

functional on Y. Suppose that

inf p(u + 0a) > @p + p(u).
a€A

Then there is a point a0 in A such that

inf p(u + 0ao + pb) > p'p + p(u 4- fa).
b£A

Proof. Choose any x, y in A and set c = (/3x4-|3'y)/(/3-|-/3'). Then

cEA   and  u+Px+P'y = u + (8+P)c = (l+p'/p)(u+Pc)-(8'/p)u.
From the hypothesis of the lemma,

-p(u) = 0p - inf p(u + fa + 8 (8> 0)
aeA
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and by sublinearity,

piu + px + fay) ̂ pH\ + fa/faiu + fa)) - piifi'/fau).

Hence for fixed a0 in A,

inf piu + fa0 + fab)
t>€A

/        fa\        ( fao + fab )        fa
-\1 + j) MY(U + ^c = T+7-' bSAf~ Jp(u)

/      A fa
^ ( H-) inf piu + fa)-piu)

\ (8 / a€A /3

( A $ ( \ fa
=    1 + — J inf piu + 0a) + — (fa - inf piu + fa)) + ~ b

\ P / aeA £  \ aeA / P

fa
= fap + inf piu + fa)-\-b.

a€A p

Thus if we choose a0 so that piu-j-j3a0) <infoe^. piu+fia) +ifa/fad we

obtain the required result.

Lemma 5. Let (j3„) be an arbitrary sequence of strictly positive real

numbers. Then there is a sequence (g„) in F such that for all ra, g„E7<„

and

p[lZ fa(gi - G_)] > - far + p [ IZ faigi ~ G-)].

Proof. We use induction and Lemma 4.

For the first step, let u = 0, (3 = ft, fa =fa and A be the set Ki — G_
= {/— G_:/E7Ci}; and p as already defined. Then inf/e^ piu+fa)

= inifeKip[faif—G-)]'^far>%far+piu) by Lemma 3, so the condi-
tions of Lemma 4 are satisfied. Hence there is giE7£i such that

inf p[faigi - G_) + faig - G_)] > \far + p[faigl - G_)].

For the rath step, let u= zZi'1 ft(g.-G-), p = fa, fa=fa+i and A be
the set Kn — G— By the inductive hypothesis, and since Kn-i^Kn,

inf piu + pf) ^ \ni{piu + pf):fE 7C„_i - G_} > \far + piu)
f£*

and Lemma 4 gives gnEKn such that if v= zZ"Pi(gi~G-),

inf piv + faf) > \far + piv)
fcA
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which is the inductive hypothesis for n. The sequence (gn) then has

the required property.

Lemma 6. There is Go in E* such that

(i) lim inf gn(x) gG0(x)     (xGP),

(ii) p(h-GB)=p(h-GJ)    (hEX).

Proof. The set Pi is the convex hull of the equicontinuous se-

quence (/„), and thus the weak*-closure of Ki in P* is weak*-com-

pact. The sequence (gn) lies in Pi and therefore has a weak* cluster-

point Go in E*. Then for each x in E, G0(x) is a cluster-point of the

real number sequence (gn(x)), and so

lim inf gn(x) g G0(x) g lim sup gn(x),

which establishes (i).

Next, since gnEKn, g„(x) is a convex combination y.X./mXx), with

the m,- not less than n. It follows that there is at least one of the mi

for which fmi(x) gg„(x). In other words, given any n there is m^n

such that

fm(x) g gn(x),

and so G_(x) =lim inf /B(x) glim sup g„(x).

A similar argument on the other side establishes G~(x) ^ lim sup gB(x).

Combining our inequalities we have G_(x) gG0(x) gG_(x), (xGP)

and so

p(k - G_) ̂  p(h - Go) ̂  p(h - G~) (h E X).

The outer terms are equal and the lemma is proved.

Corollary. The conclusion of Lemma 5 holds with G_ replaced by Go-

Proof. Fix n and let a=p\-f- • • • +/3B. Then

P [ E Hgi ~ Go)] = ap \— Z P<gi ~ Go] = ap 1"^- J2 Pig< ~ G-~\

= />[Z^(gt-G_)](

and the result is now clear.

Lemma 7. If the sequence (Bn) decreases to zero fast enough (more

precisely if (ZiT+i Pi) /j3n—>0 as n—»«>), the series

CO

Z fiifa - Go)
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defines an element g of E* which does not attain a maximum on C.

Proof. Assume to start with only that zZPt converges. Now Ki,

hence also Ki — Go, is equicontinuous; hence there is a neighbour-

hood U of 0 in E such that

*G tf=> |/(*)|   = 1        for all/E Ki - G0-

Hence

a; oo

* E U => zZ fa[gi(x) - G0(x)] g zZ fa-
»=i <=i

This shows that g is defined and continuous on E, i.e. gETi*. Now

by the note (iii) after the definition of p, there is M^0 such that

xEC,       fEKi-Go=* |/(x)|  S M.

Suppose that g attains its supremum on C at some point u of C.

Then for each w, we have

IZfaigi - Go)iu) = giu) - zZfaigi - Go)iu) <z giu) -MzZfa
1 n+l n+l

= Pig) -MzZfa^p\jZ faigi - Go)]
n+l L     1 J

- p\ IZPiigi ~ Go) - g] - M zZ Pi
L     1 J n+l

^p\ zZfa(gi-Go)~\-2MzZfa
L    1 J n+l

>—Pnr + p\zZ faigi - Go)] -2MzZ fa
2 L     1 J n+l

by Lemma 6 (Corollary)

^—pnr + zZ faigi ~ Go)(«) - 2M zZ fa-
2 1 n+l

Hence

(g„ - G0)(«) > — r - 2M ( JZ ft) /ft-

If we choose (ft) to decrease fast enough, for instance ft = 1/ra!, we

find that lim inf (g„ — G0)(«) ~^\r, which contradicts the fact that
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lim inf gn(u) ^G0(u). Hence g cannot attain its supremum on C at

any point of C, and the theorem is proved.

The author's thanks are due to Professor James for providing a

copy of his proof and some related papers on weak compactness that

have recently been, or are due to be published.
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