A PROPERTY OF /, SPACES
J. R. CALDER

1. Introduction. In 1936 J. A. Clarkson [1, p. 396] introduced the
notion of uniform convexity of the norm in a Banach space and
showed [1, p. 403] that if 1<p< « then the space /, is uniformly
convex.

It is the object of this paper to consider a generalized type of uni-
form convexity, which we shall call weak uniform convexity. In §2
we prove that if 1 £p < « then /, is weakly uniformly convex. In §3
we introduce the concepts of a norm interval and a norm convex set,
and we prove a “nearest point” theorem for norm convex sets.

This paper is based on a thesis submitted in partial fulfillment of
the requirements for the Ph.D. degree at the University of Texas. I
wish to thank sincerely Professor H. S. Wall for the guidance he has
given me.

DEFINITION 1.1. The statement that the Banach space S is uni-
formly convex means that if ¢>0 then there exists a § >0 such that if
[l =llsl =1 and |lx—y|| z¢, then ||3x+3y]| <1-5.

DEFINITION 1.2. The statement that the Banach space S is weakly
uniformly convex means that if e >0 then there exists a § >0 such that
if ||« =||»/| =1 and |x—»|| = ¢, then there exists a point, w, such that
[l —wll +llw—sl| =[lx—2l| and [[=]| =1-8.

2. A property of /, spaces. Recall that [, (1 £p < ) is defined to be
the space of real number sequences (x1, 2, - - - ) such that Zf,l |x,| »
converges, with norm ||«|| = [ 2.2, |x:|?]*/?, and that I, is the space
of bounded real number sequences with least upper bound norm.
We note thatif S is a uniformly convex Banach space then S is
weakly uniformly convex. Hence if 1 <p < « then /, is weakly uni-
formly convex.

THEOREM 2.1. The space 1, is weakly uniformly convex.

ProOF. Suppose that 0 <e=2, and suppose that x=(xy, %, - - - )
and y=(3, s - - - ) are points of I, such that ||x|| =||3|| =1 and
lx—3|| Ze. Let m=4|x—y|| and let r=(r,, 72, - - -) be the point of

I, such that for each positive integer z, 7; is the number in the com-
mon part of [x;—m, x;+m] and [y;—m, y;+m] which is smallest in
absolute value.
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Now for each positive integer 4, |x;—7;| <m and |y;—r:;| <m. Thus
|2=7i| +|ri=y:| llx—yll, and hence [|x—r|[+[|r —y]| =[x —].
Also, if x; <7y, then:
yvi—m, if y,—m=0,
r; = 0, ify,-—m<0§x,+m,
x+m, if x;,+m <O0.
If y;—m=0, then |r,~| =y,—m=1-—m, and if x;+m <0, then
|r.~| =|x,~+m| =—x;—m=1—m.
By a similar argument if y; <x; then |r,~| <1—m.
Thus ||7]] £1—13||x—9|| £1—1e, and I., is weakly uniformly convex.

THEOREM 2.2. The space l is weakly uniformly convex.

Proor. Suppose that 0 <e=2, and suppose that x=(x1, %3, * + + )
and y=(y, ¥z, - - - ) are points of /; such that ”x” =||y]|=1 and
||x——y|| =e Let r=(r, 75, - - - ) be the point of [; defined by:

0, if XY é 0,
ri={x, if 23>0 and |x| = |9,

yi, if ;>0 and |y;| <|x.-|.

Then by an argument similar to the proof of Theorem 2.1, we ob-
tain the following equalities:

(1) jxi—rs| + r;—y¢| =Ixi"‘yil,

(2) |xi—ri| =|%:| — |74,

(3) Ti—Yi| =¥ — |75
Thus | x—r||+”r—y|| =||x—9||, and ||7|| £1—%e. Hence } is weakly
uniformly convex.

3. Some properties of norm convex sets. In this section we sup-
pose that S is a Banach space with origin N.

DEFINITION 3.1. Suppose that P and Q are points of S. Then
[P, Q]* (called the norm interval from P to Q) is the point set

4 ={RinS|||P - R|+|& -0l =[P - all}.

DEFINITION 3.2. The statment that the point set M is norm convex
means that if P and Q are points of M then each point of [P, Q]* is
in M.

THEOREM 3.1. The following two statements are equivalent:
(1) there exist point P and Q such that [P, Q]*# [P, Q],
2) there exist three points x, y, and w such that w is in [x, y] and

(
[lall =lloll =leel} = 1.
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PRrOOF. Suppose (1) is true, and suppose R is a point of [P, Q]*
which is not in [P, Q]. Let:

_lr=ql
7=l

Then ||P— M| =||P—R).
Now if Z=3R+iM, then ||P—Z||=<||P—R|| and [Z-0Q]
<||R—Q||, and it follows that | P—Z|| =||P—R||.

andlet M =P 4+ (1 — 1)Q.

Hence, if
P—R P—-—M d P—-2Z
r=—) y=r——, and w=r—),
| P~ R |P — R | P~ R

then ||x|| =||y]| =||2|| =1. Since w=1x+1y, (2) is true.
Suppose (2) is true. Then it follows from the triangle inequality
that if  =3x+3y then ||7|| =1. Thus:

|z +9) = N =l + 3 — o +]l=— N

Hence x is in [NV, x+y]* but x is not in [N, x+v]. Therefore (1) is
true.

THEOREM 3.2. The following two statements are equivalent:

(1) S is weakly uniformly convex;

(2) if €>0 then there exists a >0 such that if ||x|| =||y|| =146 and
llx— | Z ¢, then there exists a point, w, in [x, y]* such that ||w|| <1.

PRrRooOF. Suppose (1) is true, and suppose that €¢>0. Let c=3e.

Then there exists a number, §, such that 0 <8 <1, and if I]rl =Hsl| =1
and ||7 —s|| = ¢ then there exists a point ¢ in [r, s]* such that||f]| <1 —4.

Now, suppose that x and y are points such that ”x” = y[ =146
and ||x—y|| Ze. Let

Y
r=——0 s=—""
14+ 1+
Then ||7|| =||s|| =1 and ||r—s|| Z¢. Let ¢ be a point of [r, s]* such

that ||f| <1—3, and let w=(148)t. Then w is in [x, y]* and
||| <(148)(1—8) <1. Thus (1) implies (2).

Now, suppose (2) is true, and suppose ¢>0. Then there exists a
number 8> 0 such that if ||x|| =||y|]| =148 and ||x—3|| Z¢, then there
exists a point w in [, y]* such that ||=|| <1.

Suppose 7 and s are points such that ||7]| =||s|| =1 and ||r—s|| 2,
and let:
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1
d=1— ——; x= (14 0)r; = (1 4 d)s.
153 T+ y=010+0s
Then ||x—y|| ¢, and there is a point w in [x, y]* such that
|lwl| <1. Now, if t=2w/(1+39), then tisin [r, s]* and ||f]| =1 —d.
Thus (2) implies (1).

THEOREM 3.3. Suppose that S is weakly uniformly convex, and sup-
pose that M is a closed, norm convex point set at a distance 1 from N.
Then M contains only one point Q such that ||Q|| =1.

PRroOF. Since Sis weakly uniformly convex, M does not contain two
points of unit length.

Suppose M contains no point of unit length, and suppose that {P.-}
is a sequence of points of M such that {||P:||} converges to 1. Then
{P;} is not a Cauchy sequence, and there exists a number >0 such
that if J is a positive integer then there exist positive integers 7 and
j=J such that |P;—P;|| 2.

By Theorem 3.2, there exists a number % >0 such that if ||u|| =]|9||
H——- h+h and ||u—9|| 27, then there exists a point win [«, v]* such that

wi| =1.

Let P and R be points of {P;} such that:

I7]l = [,
|P—R|=z7,
|7l <1+ &,
1Bl < 14+ —"
2(1 + k)
Let T be a point of [N, P] such that ||P—TJ| =||T—R|| =s. Then
r/2<s<||P||-
Now, if:
1+ h

P=——(P-T),
S

1 h
r="""r_1),
S

then || P|| =||R'|| = 1+%, and || P’ — R’|| = . Hence there exists a point,
K', of [P’, R’]* such that ||K'|| <1.

Let K=T+(s/(1+k))-K’. Then it follows that K is in [P, R]®*,
and hence K is in M.

Now,
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sh s sh
K-T|+—=x< K’
Ik = 2l + 25 = I+
=s
=||P - 1.
Hence
sh
I -2l = llp— i - -
Also,
Ikl < |7 + 12 - 7)) - -
= 144
rh sh
<1+ -
20+h) 141
r h
=1_(S__)._
2) 14k
<1

Therefore ||K|| <1, which is a contradiction since K is in M.

Thus {P;} is a Cauchy sequence. Since {||P.||} converges to 1, the
sequential limit, Q, of {P,»} ,hasnorm 1, and is the point of M nearest
to N.

We note that if S is not reflexive, then S contains a closed convex
point set M at a distance 1 from N such that if Q is in M then there
is a point P of M such that || P|| <||Q]|. Since L is not reflexive but is
weakly uniformly convex, the condition of Theorem 3.3 that M be
norm convex cannot be replaced by the condition that M be convex.
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