A PROPERTY OF lp SPACES

J. R. CALDER

1. Introduction. In 1936 J. A. Clarkson [1, p. 396] introduced the notion of uniform convexity of the norm in a Banach space and showed [1, p. 403] that if $1 then the space <math>l_p$ is uniformly convex.

It is the object of this paper to consider a generalized type of uniform convexity, which we shall call weak uniform convexity. In §2 we prove that if $1 \le p \le \infty$ then l_p is weakly uniformly convex. In §3 we introduce the concepts of a norm interval and a norm convex set, and we prove a "nearest point" theorem for norm convex sets.

This paper is based on a thesis submitted in partial fulfillment of the requirements for the Ph.D. degree at the University of Texas. I wish to thank sincerely Professor H. S. Wall for the guidance he has given me.

DEFINITION 1.1. The statement that the Banach space S is uniformly convex means that if $\epsilon > 0$ then there exists a $\delta > 0$ such that if ||x|| = ||y|| = 1 and $||x-y|| \ge \epsilon$, then $||\frac{1}{2}x + \frac{1}{2}y|| \le 1 - \delta$.

DEFINITION 1.2. The statement that the Banach space S is weakly uniformly convex means that if $\epsilon > 0$ then there exists a $\delta > 0$ such that if ||x|| = ||y|| = 1 and $||x-y|| \ge \epsilon$, then there exists a point, w, such that ||x-w|| + ||w-y|| = ||x-y|| and $||w|| \le 1 - \delta$.

2. A property of l_p spaces. Recall that l_p $(1 \le p < \infty)$ is defined to be the space of real number sequences (x_1, x_2, \cdots) such that $\sum_{i=1}^{\infty} \left| x_i \right|^p$ converges, with norm $\|x\| = \left[\sum_{i=1}^{\infty} \left| x_i \right|^p \right]^{1/p}$, and that l_{∞} is the space of bounded real number sequences with least upper bound norm. We note that if S is a uniformly convex Banach space then S is weakly uniformly convex. Hence if $1 then <math>l_p$ is weakly uniformly convex.

Theorem 2.1. The space l_{∞} is weakly uniformly convex.

PROOF. Suppose that $0 < \epsilon \le 2$, and suppose that $x = (x_1, x_2, \cdots)$ and $y = (y_1, y_2, \cdots)$ are points of l_{∞} such that ||x|| = ||y|| = 1 and $||x-y|| \ge \epsilon$. Let $m = \frac{1}{2} ||x-y||$ and let $r = (r_1, r_2, \cdots)$ be the point of l_{∞} such that for each positive integer i, r_i is the number in the common part of $[x_i - m, x_i + m]$ and $[y_i - m, y_i + m]$ which is smallest in absolute value.

Presented to the Society, January 24, 1963 under the title Concerning completely convex sets. Preliminary report; received by the editors May 21, 1965.

Now for each positive integer i, $|x_i-r_i| \le m$ and $|y_i-r_i| \le m$. Thus $|x_i-r_i|+|r_i-y_i| \le ||x-y||$, and hence ||x-r||+||r-y|| = ||x-y||. Also, if $x_i \leq y_i$, then:

$$r_{i} = \begin{cases} y_{i} - m, & \text{if } y_{i} - m \geq 0, \\ 0, & \text{if } y_{i} - m < 0 \leq x_{i} + m, \\ x_{i} + m, & \text{if } x_{i} + m < 0. \end{cases}$$

If $y_i - m \ge 0$, then $|r_i| = y_i - m \le 1 - m$, and if $x_i + m < 0$, then $|r_i| = |x_i + m| = -x_i - m \le 1 - m.$

By a similar argument if $y_i \le x_i$ then $|r_i| \le 1 - m$.

Thus $||r|| \le 1 - \frac{1}{2} ||x - y|| \le 1 - \frac{1}{2} \epsilon$, and l_{∞} is weakly uniformly convex.

THEOREM 2.2. The space l_1 is weakly uniformly convex.

PROOF. Suppose that $0 < \epsilon \le 2$, and suppose that $x = (x_1, x_2, \cdots)$ and $y = (y_1, y_2, \cdots)$ are points of l_1 such that ||x|| = ||y|| = 1 and $||x-y|| \ge \epsilon$. Let $r = (r_1, r_2, \cdots)$ be the point of l_1 defined by:

$$r_{i} = \begin{cases} 0, & \text{if } x_{i}y_{i} \leq 0, \\ x_{i}, & \text{if } x_{i}y_{i} > 0 \text{ and } |x_{i}| \leq |y_{i}|, \\ y_{i}, & \text{if } x_{i}y_{i} > 0 \text{ and } |y_{i}| < |x_{i}|. \end{cases}$$

Then by an argument similar to the proof of Theorem 2.1, we obtain the following equalities:

- (1) $|x_i-r_i|+|r_i-y_i|=|x_i-y_i|$,
- $\begin{vmatrix} (2) & x_i r_i \\ (3) & r_i y_i \end{vmatrix} = \begin{vmatrix} x_i & & r_i \\ y_i & & r_i \end{vmatrix},$

Thus ||x-r|| + ||r-y|| = ||x-y||, and $||r|| \le 1 - \frac{1}{2}\epsilon$. Hence l_1 is weakly uniformly convex.

3. Some properties of norm convex sets. In this section we suppose that S is a Banach space with origin N.

DEFINITION 3.1. Suppose that P and Q are points of S. Then $[P, O]^*$ (called the norm interval from P to O) is the point set

$$A = \{R \text{ in } S | \|P - R\| + \|R - Q\| = \|P - Q\| \}.$$

Definition 3.2. The statment that the point set M is norm convex means that if P and Q are points of M then each point of $[P, Q]^*$ is in M.

THEOREM 3.1. The following two statements are equivalent:

- (1) there exist point P and Q such that $[P, Q]^* \neq [P, Q]$,
- (2) there exist three points x, y, and w such that w is in [x, y] and ||x|| = ||y|| = ||w|| = 1.

PROOF. Suppose (1) is true, and suppose R is a point of $[P, Q]^*$ which is not in [P, Q]. Let:

$$t = \frac{\|R - Q\|}{\|P - Q\|}$$
 and let $M = tP + (1 - t)Q$.

Then ||P - M|| = ||P - R||.

Now if $Z = \frac{1}{2}R + \frac{1}{2}M$, then $||P - Z|| \le ||P - R||$ and $||Z - Q|| \le ||R - Q||$, and it follows that ||P - Z|| = ||P - R||.

Hence, if

$$x = \frac{P - R}{\|P - R\|}, \qquad y = \frac{P - M}{\|P - R\|}, \quad \text{and} \quad w = \frac{P - Z}{\|P - R\|},$$

then ||x|| = ||y|| = ||w|| = 1. Since $w = \frac{1}{2}x + \frac{1}{2}y$, (2) is true.

Suppose (2) is true. Then it follows from the triangle inequality that if $r = \frac{1}{2}x + \frac{1}{2}y$ then ||r|| = 1. Thus:

$$||(x + y) - N|| = ||(x + y) - x|| + ||x - N||.$$

Hence x is in $[N, x+y]^*$ but x is not in [N, x+y]. Therefore (1) is true.

THEOREM 3.2. The following two statements are equivalent:

- (1) S is weakly uniformly convex;
- (2) if $\epsilon > 0$ then there exists a $\delta > 0$ such that if $||x|| = ||y|| = 1 + \delta$ and $||x-y|| \ge \epsilon$, then there exists a point, w, in $[x, y]^*$ such that ||w|| < 1.

PROOF. Suppose (1) is true, and suppose that $\epsilon > 0$. Let $c = \frac{1}{2}\epsilon$. Then there exists a number, δ , such that $0 < \delta \le 1$, and if ||r|| = ||s|| = 1 and $||r - s|| \ge c$ then there exists a point t in $[r, s]^*$ such that $||t|| \le 1 - \delta$.

Now, suppose that x and y are points such that $||x|| = ||y|| = 1 + \delta$ and $||x-y|| \ge \epsilon$. Let

$$r = \frac{x}{1+\delta}$$
 and $s = \frac{y}{1+\delta}$.

Then ||r|| = ||s|| = 1 and $||r-s|| \ge c$. Let t be a point of $[r, s]^*$ such that $||t|| \le 1 - \delta$, and let $w = (1 + \delta)t$. Then w is in $[x, y]^*$ and $||w|| \le (1 + \delta)(1 - \delta) < 1$. Thus (1) implies (2).

Now, suppose (2) is true, and suppose $\epsilon > 0$. Then there exists a number $\delta > 0$ such that if $||x|| = ||y|| = 1 + \delta$ and $||x-y|| \ge \epsilon$, then there exists a point w in $[x, y]^*$ such that ||w|| < 1.

Suppose r and s are points such that ||r|| = ||s|| = 1 and $||r - s|| \ge \epsilon$, and let:

$$d = 1 - \frac{1}{1 + \delta};$$
 $x = (1 + \delta)r;$ $y = (1 + \delta)s.$

Then $||x-y|| \ge \epsilon$, and there is a point w in $[x, y]^*$ such that ||w|| < 1. Now, if $t = w/(1+\delta)$, then t is in $[r, s]^*$ and $||t|| \le 1-d$. Thus (2) implies (1).

THEOREM 3.3. Suppose that S is weakly uniformly convex, and suppose that M is a closed, norm convex point set at a distance 1 from N. Then M contains only one point Q such that ||Q|| = 1.

PROOF. Since S is weakly uniformly convex, M does not contain two points of unit length.

Suppose M contains no point of unit length, and suppose that $\{P_i\}$ is a sequence of points of M such that $\{\|P_i\|\}$ converges to 1. Then $\{P_i\}$ is not a Cauchy sequence, and there exists a number r>0 such that if J is a positive integer then there exist positive integers i and $j \ge J$ such that $\|P_i - P_j\| \ge r$.

By Theorem 3.2, there exists a number h>0 such that if ||u||=||v||=1+h and $||u-v|| \ge r$, then there exists a point w in $[u,v]^*$ such that $||w|| \le 1$.

Let P and R be points of $\{P_i\}$ such that:

$$||P|| \ge ||R||,$$
 $||P - R|| \ge r,$
 $||P|| < 1 + h,$
 $||P|| < 1 + \frac{rh}{2(1+h)}.$

Let T be a point of [N, P] such that ||P-T|| = ||T-R|| = s. Then $r/2 \le s \le ||P||$.

Now, if:

$$P' = \frac{1+h}{s} (P-T),$$

$$R' = \frac{1+h}{s} (R-T),$$

then ||P'|| = ||R'|| = 1 + h, and $||P' - R'|| \ge r$. Hence there exists a point, K', of $[P', R']^*$ such that ||K'|| < 1.

Let $K = T + (s/(1+h)) \cdot K'$. Then it follows that K is in $[P, R]^*$, and hence K is in M.

Now,

$$||K - T|| + \frac{sh}{1+h} \le \frac{s}{1+h} ||K'|| + \frac{sh}{1+h}$$

 $\le s$
 $= ||P - T||.$

Hence

$$||K-T|| \le ||P-T|| - \frac{sh}{1+h}.$$

Also,

$$||K|| \le ||T|| + ||P - T|| - \frac{sh}{1+h}$$

$$< 1 + \frac{rh}{2(1+h)} - \frac{sh}{1+h}$$

$$= 1 - \left(s - \frac{r}{2}\right) \cdot \frac{h}{1+h}$$

$$\le 1.$$

Therefore ||K|| < 1, which is a contradiction since K is in M.

Thus $\{P_i\}$ is a Cauchy sequence. Since $\{\|P_i\|\}$ converges to 1, the sequential limit, Q, of $\{P_i\}$, has norm 1, and is the point of M nearest to N.

We note that if S is not reflexive, then S contains a closed convex point set M at a distance 1 from N such that if Q is in M then there is a point P of M such that ||P|| < ||Q||. Since l_1 is not reflexive but is weakly uniformly convex, the condition of Theorem 3.3 that M be norm convex cannot be replaced by the condition that M be convex.

REFERENCE

1. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.

AUBURN UNIVERSITY