A PROPERTY OF l_{p} SPACES

J. R. CALDER

1. Introduction. In 1936 J. A. Clarkson [1, p. 396] introduced the notion of uniform convexity of the norm in a Banach space and showed [$1, \mathrm{p} .403$] that if $1<p<\infty$ then the space l_{p} is uniformly convex.

It is the object of this paper to consider a generalized type of uniform convexity, which we shall call weak uniform convexity. In §2 we prove that if $1 \leqq p \leqq \infty$ then l_{p} is weakly uniformly convex. In $\S 3$ we introduce the concepts of a norm interval and a norm convex set, and we prove a "nearest point" theorem for norm convex sets.

This paper is based on a thesis submitted in partial fulfillment of the requirements for the Ph.D. degree at the University of Texas. I wish to thank sincerely Professor H. S. Wall for the guidance he has given me.

Definition 1.1. The statement that the Banach space S is uniformly convex means that if $\epsilon>0$ then there exists a $\delta>0$ such that if $\|x\|=\|y\|=1$ and $\|x-y\| \geqq \epsilon$, then $\left\|\frac{1}{2} x+\frac{1}{2} y\right\| \leqq 1-\delta$.

Definition 1.2. The statement that the Banach space S is weakly uniformly convex means that if $\epsilon>0$ then there exists a $\delta>0$ such that if $\|x\|=\|y\|=1$ and $\|x-y\| \geqq \epsilon$, then there exists a point, w, such that $\|x-w\|+\|w-y\|=\|x-y\|$ and $\|w\| \leqq 1-\delta$.
2. A property of l_{p} spaces. Recall that $l_{p}(1 \leqq p<\infty)$ is defined to be the space of real number sequences $\left(x_{1}, x_{2}, \cdots\right)$ such that $\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}$ converges, with norm $\|x\|=\left[\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right]^{1 / p}$, and that l_{∞} is the space of bounded real number sequences with least upper bound norm. We note that if S is a uniformly convex Banach space then S is weakly uniformly convex. Hence if $1<p<\infty$ then l_{p} is weakly uniformly convex.

Theorem 2.1. The space l_{∞} is weakly uniformly convex.
Proof. Suppose that $0<\epsilon \leqq 2$, and suppose that $x=\left(x_{1}, x_{2}, \cdots\right)$ and $y=\left(y_{1}, y_{2}, \cdots\right)$ are points of l_{∞} such that $\|x\|=\|y\|=1$ and $\|x-y\| \geqq \epsilon$. Let $m=\frac{1}{2}\|x-y\|$ and let $r=\left(r_{1}, r_{2}, \cdots\right)$ be the point of l_{∞} such that for each positive integer i, r_{i} is the number in the common part of $\left[x_{i}-m, x_{i}+m\right]$ and $\left[y_{i}-m, y_{i}+m\right]$ which is smallest in absolute value.

[^0]Now for each positive integer $i,\left|x_{i}-r_{i}\right| \leqq m$ and $\left|y_{i}-r_{i}\right| \leqq m$. Thus $\left|x_{i}-r_{i}\right|+\left|r_{i}-y_{i}\right| \leqq\|x-y\|$, and hence $\|x-r\|+\|r-y\|=\|x-y\|$.

Also, if $x_{i} \leqq y_{i}$, then:

$$
r_{i}=\left\{\begin{array}{cl}
y_{i}-m, & \text { if } y_{i}-m \geqq 0 \\
0, & \text { if } y_{i}-m<0 \leqq x_{i}+m, \\
x_{i}+m, & \text { if } x_{i}+m<0
\end{array}\right.
$$

If $y_{i}-m \geqq 0$, then $\left|r_{i}\right|=y_{i}-m \leqq 1-m$, and if $x_{i}+m<0$, then $\left|r_{i}\right|=\left|x_{i}+m\right|=-x_{i}-m \leqq 1-m$.

By a similar argument if $y_{i} \leqq x_{i}$ then $\left|r_{i}\right| \leqq 1-m$.
Thus $\|r\| \leqq 1-\frac{1}{2}\|x-y\| \leqq 1-\frac{1}{2} \epsilon$, and l_{∞} is weakly uniformly convex.
Theorem 2.2. The space l_{1} is weakly uniformly convex.
Proof. Suppose that $0<\epsilon \leqq 2$, and suppose that $x=\left(x_{1}, x_{2}, \cdots\right)$ and $y=\left(y_{1}, y_{2}, \cdots\right)$ are points of l_{1} such that $\|x\|=\|y\|=1$ and $\|x-y\| \geqq \epsilon$. Let $r=\left(r_{1}, r_{2}, \cdots\right)$ be the point of l_{1} defined by:

$$
\boldsymbol{r}_{i}= \begin{cases}0, & \text { if } x_{i} y_{i} \leqq 0, \\ x_{i}, & \text { if } x_{i} y_{i}>0 \text { and }\left|x_{i}\right| \leqq\left|y_{i}\right|, \\ y_{i}, & \text { if } x_{i} y_{i}>0 \text { and }\left|y_{i}\right|<\left|x_{i}\right| .\end{cases}
$$

Then by an argument similar to the proof of Theorem 2.1, we obtain the following equalities:
$\begin{aligned} & \text { (1) }\left|\begin{array}{l}x_{i}-r_{i}\left|+\left|r_{i}-y_{i}\right|=\left|x_{i}-y_{i}\right|,\right. \\ \text { (2) } \\ x_{i}-r_{i} \\ \text { (3) } \\ r_{i}-y_{i}\end{array}=\left|\begin{array}{l}x_{i} \\ y_{i}\end{array}\right|-\left|r_{i}\right|,\right. \\ & r_{i}\end{aligned},$. uniformly convex.
3. Some properties of norm convex sets. In this section we suppose that S is a Banach space with origin N.

Definition 3.1. Suppose that P and Q are points of S. Then [$P, Q]^{*}$ (called the norm interval from P to Q) is the point set

$$
A=\{R \text { in } S \mid\|P-R\|+\|R-Q\|=\|P-Q\|\}
$$

Definition 3.2. The statment that the point set M is norm convex means that if P and Q are points of M then each point of $[P, Q]^{*}$ is in M.

Theorem 3.1. The following two statements are equivalent:
(1) there exist point P and Q such that $[P, Q]^{*} \neq[P, Q]$,
(2) there exist three points x, y, and w such that w is in $[x, y]$ and $\|x\|=\|y\|=\|w\|=1$.

Proof. Suppose (1) is true, and suppose R is a point of $[P, Q]^{*}$ which is not in $[P, Q]$. Let:

$$
t=\frac{\|R-Q\|}{\|P-Q\|} \text { and let } M=t P+(1-t) Q .
$$

Then $\|P-M\|=\|P-R\|$.
Now if $Z=\frac{1}{2} R+\frac{1}{2} M$, then $\|P-Z\| \leqq\|P-R\|$ and $\|Z-Q\|$ $\leqq\|R-Q\|$, and it follows that $\|P-Z\|=\|P-R\|$.
Hence, if

$$
x=\frac{P-R}{\|P-R\|}, \quad y=\frac{P-M}{\|P-R\|}, \quad \text { and } \quad w=\frac{P-Z}{\|P-R\|},
$$

then $\|x\|=\|y\|=\|w\|=1$. Since $w=\frac{1}{2} x+\frac{1}{2} y$, (2) is true.
Suppose (2) is true. Then it follows from the triangle inequality that if $r=\frac{1}{2} x+\frac{1}{2} y$ then $\|r\|=1$. Thus:

$$
\|(x+y)-N\|=\|(x+y)-x\|+\|x-N\| .
$$

Hence x is in $[N, x+y]^{*}$ but x is not in [$N, x+y$]. Therefore (1) is true.

Theorem 3.2. The following two statements are equivalent:
(1) S is weakly uniformly convex;
(2) if $\epsilon>0$ then there exists $a \delta>0$ such that if $\|x\|=\|y\|=1+\delta$ and $\|x-y\| \geqq \epsilon$, then there exists a point, w, in $[x, y]^{*}$ such that $\|w\|<1$.

Proof. Suppose (1) is true, and suppose that $\epsilon>0$. Let $c=\frac{1}{2} \epsilon$. Then there exists a number, δ, such that $0<\delta \leqq 1$, and if $\|r\|=\|s\|=1$ and $\|r-s\| \geqq c$ then there exists a point t in $[r, s]^{*}$ such that $\|t\| \leqq 1-\delta$.

Now, suppose that x and y are points such that $\|x\|=\|y\|=1+\delta$ and $\|x-y\| \geqq \epsilon$. Let

$$
r=\frac{x}{1+\delta} \quad \text { and } \quad s=\frac{y}{1+\delta} .
$$

Then $\|r\|=\|s\|=1$ and $\|r-s\| \geqq c$. Let t be a point of $[r, s]^{*}$ such that $\|t\| \leqq 1-\delta$, and let $w=(1+\delta) t$. Then w is in $[x, y]^{*}$ and $\|w\| \leqq(1+\delta)(1-\delta)<1$. Thus (1) implies (2).

Now, suppose (2) is true, and suppose $\epsilon>0$. Then there exists a number $\delta>0$ such that if $\|x\|=\|y\|=1+\delta$ and $\|x-y\| \geqq \epsilon$, then there exists a point w in $[x, y]^{*}$ such that $\|w\|<1$.

Suppose r and s are points such that $\|r\|=\|s\|=1$ and $\|r-s\| \geqq \epsilon$, and let:

$$
d=1-\frac{1}{1+\delta} ; \quad x=(1+\delta) r ; \quad y=(1+\delta) s
$$

Then $\|x-y\| \geqq \epsilon$, and there is a point w in $[x, y]^{*}$ such that $\|w\|<1$. Now, if $t=w /(1+\delta)$, then t is in $[r, s]^{*}$ and $\|t\| \leqq 1-d$.

Thus (2) implies (1).
Theorem 3.3. Suppose that S is weakly uniformly convex, and suppose that M is a closed, norm convex point set at a distance 1 from N. Then M contains only one point Q such that $\|Q\|=1$.

Proof. Since S is weakly uniformly convex, M does not contain two points of unit length.

Suppose M contains no point of unit length, and suppose that $\left\{P_{i}\right\}$ is a sequence of points of M such that $\left\{\left\|P_{i}\right\|\right\}$ converges to 1 . Then $\left\{P_{i}\right\}$ is not a Cauchy sequence, and there exists a number $r>0$ such that if J is a positive integer then there exist positive integers i and $j \geqq J$ such that $\left\|P_{i}-P_{j}\right\| \geqq r$.

By Theorem 3.2, there exists a number $h>0$ such that if $\|u\|=\|v\|$ $=1+h$ and $\|u-v\| \geqq r$, then there exists a point w in $[u, v]^{*}$ such that $\|w\| \leqq 1$.

Let P and R be points of $\left\{P_{i}\right\}$ such that:

$$
\begin{aligned}
\|P\| & \geqq\|R\|, \\
\|P-R\| & \geqq r \\
\|P\| & <1+h, \\
\|P\| & <1+\frac{r h}{2(1+h)} .
\end{aligned}
$$

Let T be a point of $[N, P]$ such that $\|P-T\|=\|T-R\|=s$. Then $r / 2 \leqq s \leqq\|P\|$.

Now, if:

$$
\begin{aligned}
& P^{\prime}=\frac{1+h}{s}(P-T), \\
& R^{\prime}=\frac{1+h}{s}(R-T),
\end{aligned}
$$

then $\left\|P^{\prime}\right\|=\left\|R^{\prime}\right\|=1+h$, and $\left\|P^{\prime}-R^{\prime}\right\| \geqq r$. Hence there exists a point, K^{\prime}, of $\left[P^{\prime}, R^{\prime}\right]^{*}$ such that $\left\|K^{\prime}\right\|<1$.

Let $K=T+(s /(1+h)) \cdot K^{\prime}$. Then it follows that K is in $[P, R]^{*}$, and hence K is in M.

Now,

$$
\begin{aligned}
\|K-T\|+\frac{s h}{1+h} & \leqq \frac{s}{1+h}\left\|K^{\prime}\right\|+\frac{s h}{1+h} \\
& \leqq s \\
& =\|P-T\|
\end{aligned}
$$

Hence

$$
\|K-T\| \leqq\|P-T\|-\frac{s h}{1+h}
$$

Also,

$$
\begin{aligned}
\|K\| & \leqq\|T\|+\|P-T\|-\frac{s h}{1+h} \\
& <1+\frac{r h}{2(1+h)}-\frac{s h}{1+h} \\
& =1-\left(s-\frac{r}{2}\right) \cdot \frac{h}{1+h} \\
& \leqq 1
\end{aligned}
$$

Therefore $\|K\|<1$, which is a contradiction since K is in M.
Thus $\left\{P_{i}\right\}$ is a Cauchy sequence. Since $\left\{\left\|P_{i}\right\|\right\}$ converges to 1 , the sequential limit, Q, of $\left\{P_{i}\right\}$, has norm 1 , and is the point of M nearest to N.

We note that if S is not reflexive, then S contains a closed convex point set M at a distance 1 from N such that if Q is in M then there is a point P of M such that $\|P\|<\|Q\|$. Since l_{1} is not reflexive but is weakly uniformly convex, the condition of Theorem 3.3 that M be norm convex cannot be replaced by the condition that M be convex.

Reference

1. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-414.

Auburn University

[^0]: Presented to the Society, January 24, 1963 under the title Concerning completely convex sets. Preliminary report; received by the editors May 21, 1965.

