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1. Results. It is well known [2] that if A and B are n and m-

square matrices respectively then

(1) det(^ ® B) = (det(A))m(det(B))»

where A®B is the tensor or direct product of A and B. By taking

absolute values on both sides of (1) we can rewrite the equality as

(2) I det(4 <g> B) |2 = (det(4^*))'»(det(73*P))«,

where A* is the conjugate transpose of A.

The main result is a direct extension of (2) to permanents. In gen-

eral, equality will not be maintained, and the cases of equality will

require a somewhat delicate analysis.

Theorem I. If A and B are n-square and m-square complex matrices

respectively then

(3) I per(4 ® B) |2 ^ (per(AA*))m(per(B*B))n.

Equality holds in (3) if and only if either

(a) A has a zero row or B has a zero column, or

(b) A and B are both generalized permutation matrices, i.e., each of

A and B is a product of a diagonal matrix and a permutation matrix.

The inequality (1) should also be compared to a recent abstract

[l] in which the following result is announced:

(4) per(4 <g> B) ^ (per(^))™(per(7i))»

where A and B are assumed to have non-negative entries.

A lower bound of the type (4) is also available for positive semi-

definite hermitian matrices.

Theorem 2. If A and B are positive semi-definite hermitian n-square

and m-square matrices respectively then

(5) per(A ® B) ^ (-)   (-—) (per(4))-(per(5))».
\n\/   \m\ /

Equality holds in (5) if and only if at least one of A and B has a zero row.
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In §3 we give a combinatorial application of Theorem 1.

2. Proofs. Let ei, ■ ■ ■ , e„ be the unit ra-tuples, e, = (5i,, • • • , 8ni),

and let e, = (5ii, • ■ • , 8im), i = 1, • • • , m, be the unit m-tuples. In

general we will lexicographically index the rows and columns of A ®B

by the set V whose elements are all the sequences a = («i, a2), 1 ^«i

5=ra, 1 Sa?. = m- Row a of A ®B is A (ai)®Biat) where A (l) is the ith

row of A. Similarly column a of ^4<g>P is A<-ai)<S>Biai) where Aw is

the ith column of A. To prove Theorem 1 we use a result in [3] that

states that

(6) | per(XF) |2 ^ per(XX*) per( Y*Y)

for any two matrices X and Y. Equality can hold in (6) only if a row

of X or a column of F is zero, or X* can be obtained from Y by post-

multiplication with a generalized permutation matrix. Then directly

applying (6) to A®Im and In®B we have

| per(^ ® B) |2 =   | per((^ ® 7m)(7„ ® B)) |2

^ per((^ ® Im)iA ® Im)*) per((7„ ® P)*(7„ ® P))

= per(^^* ® 7m)per(7„ <g> P*P).

It is obvious from the structure of In®B*B that per (7„®P*P)

= (per iB*B))n. On the other hand X®Y is always permutation

equivalent to F®X, and since the permanent is unaltered by per-

mutations it follows that per iAA*®Im) = (per iAA*))m. The in-

equality (3) then follows directly from (7). To settle the cases of

equality in (3) we use the result quoted for the cases of equality in

(6). Thus equality holds in (3) only if

(a) a row of A ®Im or a column of In®B is zero, or

(b) the following equality holds

(8) A* ® Im = (7„ ® B) DP

where D and P are razra-square diagonal and permutation matrices

respectively. According to our previous remarks if row a of A®Im

is zero then A^ai)®eai = 0. But this obviously implies that A(ai)=0,

i.e., that a row of A is zero. Similarly, if a column of In®B is zero it

follows that a column of P must be zero. Thus let us assume that no

row of A and no column of B is zero. Then the equality in (3) implies

that (8) holds. But (8) is precisely the same as saying that for an

appropriate permutation a of T and suitable constants da, aE^,

iA* ® 7„,)<"> = d,ia)iln ® B)'M,        aET;

that is,
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(9) A*™ ® ea2 = d.ia)e,Ml <g> £<'<■>•>,        a G T,

where if (3 = (p\, /32) =o(a) then cr(a)i = /3„ * = 1, 2. The equality (9) can

be restated

(10) A(ai) ® ea, = d,we.Wl ® P'<<">»,    for all a E T,

where the bar in the first term indicates the complex conjugate. Now

no da can be 0, aGT, otherwise (10) would imply that A has a zero

row, our previous case. Moreover, since er is a permutation of V,

ff(a)2 varies over 1, • • • , m as a varies through T. It follows from

(10) that

Aw = ateit,       t = 1, • ■ • , n,

S(i) = btlj„       t = 1, • • • , m,

for appropriate sequences (*i, ■■■,!,), l|ti^n, and (ji, ■ • • ,jm),

I Sjt^nt, and nonzero constants at and bt. It follows that the (a, /3)

entry of A ®B, a, /3 in T, is

(A («!) ® ««„ eh ® P(^>) = aaid01(eiai, e0l)(eav ej01)

=   aatdfabi^Oaufi,

where we have used the standard inner products for the various se-

quence spaces. Suppose first that (ii, ■ ■ • , in) omits an integer q,

Ifsq^n. Then the («i, a2), (q, /32) entry of A ®B is

aaidgjii^qSczJfo   =   0,

according to (11). That is, column (q, |82) of A®B is zero. But then

per (A <g>P) =0 and it follows that at least one of per (AA*) or per

(B*B) =0. (Recall that we are assuming equality in (3)).

But according to a recent inequality [4],

per(AA*) ̂ fl(Am,Am)
»=i

and

m

per(B*B) ̂  II (*•"'» *(0)-
>=i

It follows that A must have a zero row or B a zero column, again the

previous case. Thus (iu ■ • ■ , in) can omit no integer q, l^q^n, and

thus must be 1, • • • , n in some order. Similarly, if (ji, • • ■ > jm) were

to omit p, l^p^m, it would follow from (11) that the (o/i, p),

(Bi, (32) entry of ^4® P is
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Qaidfij>ia10lO'pill1  =   0-

Thus row («i, p) of A ®B would be zero and once again we could con-

clude that A would have to have a zero row or B a zero column. Thus

On " " " , jm) must be a permutation of 1, • • • , m. In other words,

both A and B must be generalized permutation matrices.

Suppose, conversely that A and B are generalized permutation

matrices,

A = QD,       B = RK

where P=diag (oi, ■ ■ ■ , an), A=diag (6i, ■ • • ,bm) and Q and R are

ra-square and raz-square permutation matrices respectively.

Then

periA ® B) = per(@7) ® RK)

= per((Q ® R)iD ® K))

= per(P ® K)

n        m

= n n ati-
.=1 >=1

On the other hand,

periAA*) = per(0;DP*0;*)

= per(PP*)

= n \<n\\•=i

per(P*P) = fl | bi |2,
»-i

and the equality in (3) holds. If either A has a zero row or B a zero

column then both sides of (3) are 0. This completes the proof of

Theorem 1.

To prove Theorem 2 we observe first that A®B is also positive

semi-definite hermitian. It is proved in [4] that for any positive

semi-definite hermitian matrix A

n n

(12) II«»^per(^) Sn\Yla,i.
>-i ,=i

The lower inequality holds in (12) if and only if A is a diagonal matrix

or A has a zero row. The upper inequality holds if and only if A has

a zero row or A is of rank 1. Applying the inequalities (12) to A ®B

we have
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per(.4 ® B)^ H iA ® B)aa
aeT

n m

~    Ll      Ll   aa\aiOaia*

(13)

n«.<)(n>)
> /per^Y/per(B)y

\    ra!    /   \    ml    /  '

the required inequality. We will have equality throughout (13) if

A ®B has a zero row. If A ®B has no zero row then equality through-

out (13) would require that A®B be a diagonal matrix of rank 1,

an obvious impossibility. On the other hand, A ®B can have a zero

row if and only if either A or B does. This completes the proof of

Theorem 2.

3. A combinatorial application.   Let  S={oi, • • • ,  an}   and  let

Si, • • • , S„ be subsets of S. Similarly let T= {bi, • ■ • , bm} and let

Pi, • • • , Tm be subsets of P. The incidence matrix for the configura-

tion S is defined to be the ra-square 0-1 matrix A whose ii, j) entry

is 1 or 0 according as OiESj or a^ESy. We can similarly define the

wz-square incidence matrix B for the configuration P. Consider the

cartesian product set SX T and the nm subsets SiX Tj, i= 1, • • ■ , ra,

j = 1, • ■ ■ , m. The incidence matrix for this configuration is con-

structed as follows. If a and /3 are in T then (aai, &„2) E Ss, X P^ if and

only if aaiES^l and &02EFfl2- In other words, the a, ft entry of the

incidence matrix for the cartesian product configuration is Sa^S,,^.

But this is just the (a, fa entry of A ®B. Thus A ®B is the incidence

matrix for the SXT configuration.

A system of distinct representatives (SDR) for the subsets Si, ■ • • ,

S„ [5] is an ordered selection

fl«(i), ■ ' ' , ff*(n), 0«(i)E St,       i = 1, • ■ • , ra.

It is an immediate consequence of the definition that the number of

SDR's for the subsets Si, • • • , S„ is just per L4) [5, p. 54].

It is clear that Theorem 1 implies the following result.

Theorem 3. Let p denote the number of SDR's for the cartesian prod-

uct configuration, SXT, and let A and B be the incidence matrices for

the S and T configurations respectively. Then

(14) p = iperiAA*))™!* (per(P*£))»/2.
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Equality can hold in (14) if and only if
(a) the subsets Si, ■ ■ ■ , S„ all omit some ai, or

(b) some Tj is empty, or

(c) Si= {«*(,■)}, t = l, • ■ • , n, and Tj={bHj)}, j = l, ■■ ■ , m,

where <p and 6 are permutations of 1, • • • , n and 1, • • • , m respec-

tively.
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