
ON THE STRUCTURE OF REPRESENTATIONS OF
CONTINUOUS FUNCTIONS OF SEVERAL

VARIABLES AS FINITE SUMS OF
CONTINUOUS FUNCTIONS OF

ONE VARIABLE

DAVID A.SPRECHER

1. Introduction and summary. Let Cn denote the set of all real and

continuous functions of ra variables, defined on the ra-dimensional unit

cube, S„, in Euclidean space, (R„: in particular, 6 will mark the set of

real and continuous functions defined on the real line, (R. Considered

in this paper are the representations of arbitrary functions of C„

(ra2:2) as finite superpositions of functions of 6, using only addition.

That is, we are interested in the representations of an arbitrary func-

tion, /(xi, • • • , xn)E&n, as

(1) f(Xl,   ■   ■   ■   ,  Xn)   =       JZ     gl ZZ    4>pqixP)      ,
l^q^m        L lgpgn

where gg(£)(EC, ^„fflG6 and m is arbitrary.

It was proved by Kolmogorov in a remarkable paper [2 ] that such

representations are possible with a fixed set of monotonic increasing,

Holder-continuous functions,1 \ppq, l^p^n, l:£g:£2ra+l, the \ppq,

namely, being independent of /. Modifying Kolmogorov's construc-

tion, we obtained in [5] the stronger version which states that all

functions/£©„ can be represented as

(2) /(*!, • • • , *„) =      1Z     g\   E   *PQ<KxP + eq) 1
lsgg2n+l      L lsp^n _1

where g(£)£e, X and e are constants, \piOE& is monotonic increas-

ing and Holder-continuous, X, e and \j/ being independent of / (e, in

fact, can be taken to be any nonzero constant).

One naturally aims to obtain representations such as described

with the smoothest possible fixed functions: it is regrettable that the

function $/ in our construction is pathological, as described in
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1 A function, <j>(x), is Holder-continuous (with exponent a) if there are constants

a and /3, 0<a<l, for which | <f>(x) — 4>(y)\ <0\x— y\a for all points, x and y, in the

domain of <j>.
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Theorem 1. The derivative of yp is zero almost everywhere.

An analysis of the constructions in [2 ] and the proof below reveal

that Theorem 1 applies also to the functions \ppq.

That the dependence of \f/ on the parameter q cannot be eliminated

is established in

Theorem 2. Not every polynomial wG6„, w3?2, can be represented

in the form

(3) u(xh  ■  ■  ■ , Xn)  =     Z)    gg\     Z) apqtp(xP) + Pq\,

where g9(^)G6, ^)£E, apq and j3q are constants, and m is an arbi-

trary natural number.

Without loss of generality, we may assume that the functions \pp

are monotonic increasing, for suppose that ipp(xp) =\pP(yp) for some

points, xp^yp: then the right side of (3) will yield the same number

for the points (xi, • ■ • , x„) and (yi, ■ ■ ■ , yn), whereas we can always

find a polynomial «GCB for which u(xi, ■ ■ ■ , Xn)^u(yi, ■ ■ ■ , y„).

In a given polynomial, u(xi, ■ • • , x„), we substitute xp = \pp(tp) and

write

U(xh   ■   ■   ■  ,  Xn)   =   M[^l(/i),     •   •   •  , >pn(tn)]   =   k(h,   ■   ■   ■  ,  tn).

Applying formula (3) to h(h, ■ ■ ■ , tn) and then replacing \pP(tp) by

xp for each p we obtain the equivalent representation

(4) «(*i, •••,*«) =     J2    gq\    X) apqXP + 04    •

Thus, Theorem 2 is proved through

Lemma 1. Not every polynomial u€E&n has a representation as (4).

The constants apq can be chosen so as to have the arguments of the

functions gq separate all points of Sn. This yields

Corollary 1. It is necessary but not sufficient that the arguments of

any representation of polynomials in the form (2) separate all points

of&„.

We first remark that the functions gq can always be replaced by a

single function g by suitably selecting the constants j39, an observa-

tion for which the author is indebted to G. G. Lorentz.

A result of a similar nature to Theorem 2 is due to P61ya-Szego
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[4], who proved that the function fix, y, z) =xy+xz-\-yz cannot be

constructed by composing only three functions of two variables each,

if the functions used are infinitely differentiable and are defined on

all of S\3; Ostrovski [3] has shown that the function

?(*, y) =  IZ x>/v*
l£»Soo

cannot be represented (in any domain) with a finite number of ana-

lytic functions of only one variable, and algebraic functions involving

any number of arguments.

The impossibility of (4) was first suggested by A. Douglis, who

noted that every continuous function which admits such a represen-

tation will necessarily satisfy a partial differential equation with con-

stant coefficients: indeed, we shall show that the right side of (4) is

weakly annihilated by a certain mth order differential operator.

2. Proof of Theorem 1. To investigate the function \f/, it is neces-

sary to recall the manner in which it was constructed. We do so

briefly, omitting entirely the required proofs: these are readily sup-

plied from [5]. For convenience, \p is being constructed for the posi-

tive real line, (R+.

r will stand for the set of natural numbers; i,j and k will designate

indices ranging over T. We define the following constants:

y ^ 2ra + 2,

A ^ in + l)*-1,

(5) ,    y~2 -kbk =- y k,

y - 1

ft = (7 - 2) zZ y~Sk+',
»er

the last three constants being defined for each k, and corresponding

closed intervals,

Ekii) = [iy~k, iy~k + 5*],

(°) r 1
Bkii) = In-"*, jy-"" + «* J,

laid, respectively on orthogonal coordinate axes in the real plane.

Let us first note the relevant properties of the Ekii):

For fixed k, the intervals are separated by gaps of width (7 —2)_1S/t;

for increasing k, they are either nested or disjoint, as follows:

(7) Ekii) D Ek+iii1)
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if, and only if, i'=yi+t, 0^t^y — 2; the intervals corresponding to

values i'=yi+y — 1 are located in the gaps separating the Ek(i) for

each k. For subsequent calculations, it is important to observe that

the initial points of the intervals Ek(i) and Ek+i(i') coincide when

i'=yi, whereas their terminal points are indistinguishable for all

values i' = yi +y — 2.

The intervals Hk(j), being evidently pairwise disjoint for fixed k,

are, like the above intervals, nested or disjoint for increasing k:

(8) Hk(j) D Hk+i(f)

if, and only ii, f =jyfik~fik+1+s, 0^s^y — 2, whereas for the excluded

values of 5, the Hk+i(j') lie in the gaps separating the Hk(j) for fixed

k. Again, the initial and terminal points of the intervals Hk+i(j') are

related to those of the Hk(j) for the values s = 0 and 5=7 —1, respec-

tively.

To construct \p, we aim to relate inductively on k certain of the

intervals Hk(j) to the Ek(i) through a single valued function, jk=jk(i),

j*Gr: the correspondence will not be detailed here beyond stating

that the relation is subject to the following conditions:

(i)  For each k, the association is monotonic increasing.

(ii) The Hk(jk) will be subject to condition (8) with j=jk and

f =jk+l-
(iii) The widths of the gaps between the Hk(jk) diminish to zero,

uniformly in jk, as k—> co.

\pl will mark the image of an interval 7 under the mapping \p:

The structure of the function \p in formula (2) is described in

Theorem 3. The biunique correspondence

(9) +Ek(i) = 77*0'*)

defines a point-correspondence,

.  . Hiy~k) = juy-1"',

yp(iy~k + 8k) = jky~Sk + tk,

which has a unique continuous extension, again denoted \p, such that

i^(R+=(R+. This extension is monotonic increasing, Holder-continuous

(with exponent In 2/ln 7), as proved in [5], and has, in addition, the

following structure:

Designate by V the set of all points belonging to infinitely many of the

intervals Ek(i):
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V =  L:kE  0 Ek,ii,)\ ,
I .er ;

{k,\ and [ir\ being arbitrary infinite sequences in T. Denote by Ek ii)

the closed gaps separating the Ekii) when k is fixed:

E{ ii) = [iy~k + h, ii + 1)T-*];

let W stand for the set of those points of (R+ which are excluded for some

value of k from the interiors of all intervals Ek+,ii) ivEY): that is, we

define the set

W =  U: £ E  0 Ek'+,ii,)\ .
\ »er /

Upon examination W is seen to be expressible as the countable

union of perfect sets of measure zero, from which it follows that the

set V has full measure. Expressing (R+ as the union of mutually ex-

clusive sets,

6^ = ^ - W) U iW - V) U iV Pi W),

we can describe the differentiability of \p as follows:

(i) yp' = 0 at all points of V—W where the derivative exists.

(ii) \f/' = + °o at those points of W—V where if/' exists.

(iii) \p is not differentiable on the set Vf\W, this set consisting of

the points iy~k and iy~k-\-hk, for all admitted i and k.

The number

m& . Iim «* + *■>'»»
t—« A*

is a derived number of \p at £ if the limit exists for some null-sequence

{hk\ : the notation Lhpi^ — ) and D\pi^-\-) is self explanatory.

The function \p being monotonic, its derived numbers are uniquely

determined almost everywhere, when Lhl/=\p', as follows from

Lebesgue's well-known theorem. Therefore, the assertion made in (i)

will be proved once we demonstrate that \p has a vanishing derived

number at all points of the set V—W (we shall show, in fact, that

this is true throughout the set V); the claim in (ii) is established by

showing that each point of W — V has a derived number Tfy = + oo .

Let £ be an arbitrary ooint in (R+: if ££ V, then this point is the

infinite intersection of a nested sequence of intervals Ekyii/) for cer-

tain infinite sequences of natural numbers, {kv} and {i,}. From

these we can extract infinite subsequences, {kVjk} and {iP)l}, for which
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at least one of the following inequalities is valid for all values of <x:

(11) £ - vrS ^ §SS

or

(12) vrs + «*,„ - i, ̂  \8W

In the first case, we designate the difference by a„ and find that

<K?) - Hi. ~ «m) -i
(13) 0 ^ 7^(£-) = lim —- ^ lim 28kf e*,   = 0.

Similarly, we show that D4'(^ + ) =0 in case (12) is valid.

The claim made in (ii) is proved in a like fashion, except for an

estimate which has to be deduced from the constructions with which

i/' was defined. If £GJF, then { can be expressed as the infinite inter-

section of appropriate gaps, Ek^,(iv), k being fixed: according to (6),

each of these gaps has width (7 —2)_15j,.+„. On the other hand, one

readily verifies from [5, §4] that the corresponding gaps between the

Hk(jk) are bounded from below by y~^k: one then shows that the gaps

between the intervals Hk+V(jk+V) are of width not less than

(14) b = \cy~»k2~\

c being a fixed positive constant. As in the previous case, we can find

an infinite sequence {v^} for which either

(15) *({) - *((«,„ + 1)7-*-") ^ 1*

or

(16) Mi^y-"-" + W) - *(f) ^ hb

for all u. Estimating now the appropriate difference quotient, we de-

duce that one of the relations, £ty(£ —) = + =0 or Lhp(^-\-) = -|- 00 ,

must hold, and (ii) follows.

To prove (iii), we observe that for each point iy~k, i and k being

held fixed, there are numbers i,y~k~" such that iy~k = i„y~k~v for all

cGT, and furthermore,

iy-k =  lim (i,y-k~" + «*+„) =  lim (*,y-*-*» - (7 - 2)-%+y).
v—* 00 y—► 00

With % = iy~k and ^ = iy~k-\-8k, respectively, it follows from (11-16)

that Ity(iy-k+)=0, Lhb(iy-k-) = + °o , 7ty((fr* + 5*)+) = + °°,

and Dip((iy~k + 8k) —) = 0 for all * and k, thereby completing the proof.

3. Proof of Theorem 2. As noted, all we need prove is Lemma 1.
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This is proved with the help of the theory of generalized functions

(distributions), whereby every continuous function is differentiable.

The simplest approach for our purpose is that of Bochner [l]. We

recall that in this version of the theory, df/dxP designates the equiva-

lence class of weakly convergent sequences with representative {Ap/},

where

Aj/ = — [f(*i, ■ ■ ■ ,xp + e, ■ ■ ■ ,x„) - /(*i, • ■ • , xn)];

we mention in passing that every ordinary derivative is also a weak

derivative (we use the same notation for both).

With the notation

h" =   zZ apqXp + fa
lSPSn

we consider the partial derivatives dgihq)/dxp for fixed p and q. We

consider the operators

d d
oc2q-aiq-)

dXi 3x2

where, for each q,

(a2q-au — )g(A<0 =  \a2q — [g(A« + a,^) - g(A«)]
\        dxi dx2/ K       «i

- otiq— [gih* + a2„e2) - g(A")]i .
e2 ;

If we set ei = e'/«ig in the first difference quotient, and t2 = t'/a2q in

the second (as we may without destroying the equivalence class),

then we find that each of these difference quotients equals

«i««i, — [«(A« + O - gih")],

from which it follows that

/        d d \
[a2q-au~-- )gih") = 0.
\      dxi dx2/

This being valid for each q, we have

(i7)        n U*^- - "i,-P) z «(*«) = o.
l£9Sm \ OXl OX2/ lS8Sm
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On the other hand, let v(x2, ■ ■ ■ , x„) be any polynomial (or any con-

tinuous function for that matter); the function

«(*i, • • • , *n) = *i     + v(x,, ■ ■ ■ , xn)

is not annihilated by the differential operator in (15), thereby proving

that at least this function cannot be represented in the manner of

Theorem 3.

Bibliography

1. S. Bochner, Lectures on Fourier integrals, Princeton Univ. Press, Princeton,

N. J., 1959; Chapter VI.
2. A. N. Kolmogorov, On the representation of continuous functions of several vari-

ables by superposition of continuous functions of one variable and addition, Dokl. Akad.

Nauk. SSSR 114 (1957), 953-956.
3. A. Ostrovski, Uber Dirichletschen Reihen und algebraische Differentialgleich-

ungen, Math. Z. 8 (1920), 241-298.
4. G. P61ya and G. Szeg6, Aufgaben und Lehrsatze aus der Analysis, Problems

119-119(a), 2nd ed., Springer-Verlag, Berlin, 1954, pp. 61-62, 220-223.
5. D. A. Sprecher, On the structure of continuous functions of several variables,

Trans. Amer. Math. Soc. 115 (1964), 340-355.

Syracuse University


