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In [l] and [2] O. H. Hamilton and J. Stallings have shown that a

local connectivity mapping, and hence a connectivity mapping, of a

locally peripherally connected polyhedron into a regular Hausdorff

space is peripherally continuous. The purpose of this paper is to prove

the converse of this theorem.

Some definitions will now be recalled. A mapping /: S-+T is a

connectivity mapping if for every connected set A in S, the set g(A)

is connected, where g: S—>SXP is the graph map of / defined by

g(P) = (P> f(P)) [l, P- 750]. The mapping / is a local connectivity

mapping if there is an open covering { Ua} of 5 such that f\ Ua is a

connectivity mapping for every a [2, p. 249]. The mapping/ is periph-

erally continuous if for every point p in S and for every pair of open

sets P and V containing p and f(p), respectively, there is an open set

NC U and containing p such that f(F(N)) C V, where P(A0 is the

boundary of N [l, p. 751]. A space S is locally peripherally connected

if every point has arbitrarily small neighborhoods with connected

boundary [2, p. 252].

In this paper S will denote a connected, locally connected, locally

peripherally connected, unicoherent metric space and P a space such

that SX T is completely normal.

The following lemma, proved by Stallings [2, p. 255], is used in the

proof of Theorem 1.

Lemma 1. Iff: S—>-T is peripherally continuous, then for every point

p in S and every pair of open sets U and V containing p and (p, f(p)),

respectively, there is an open connected set NEUand containing p such

that F(N) is connected and g(F(N)) C V.

Lemma 2. Let W be an open connected subset of S such that F(W) is

connected. Let Wi and W2 be open connected sets such that Wi(~\W2t^0,

F(Wi) and F(W2) are connected, and c\(Wi)\Jc\(W2) EW. Then there

is a connected open set W3 such that (1) WiVJW,C W3E W, (2) F(W3)

is contained in F(Wi)*UF(W2), and (3) F(W3) is connected.

Proof. The proof is similar to the proof of Lemma 1. Let X

= WiUW2. Then F(X) is connected and separates F(W) and X. Let
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C=FiX)VJ{yEW; F(X) separates y and F{W)) and W3 = com-

ponent of int C containing X. Then by standard theorems concerning

unicoherence [3, p. 51], FiW3)EFiX) and FiW3) is connected.

The following theorem is the converse of Hamilton's and Stallings'

theorem.

Theorem 1. If f: S—>F is peripherally continuous, then f is a con-

nectivity map.

Proof. Suppose that / is not a connectivity map and let A be a

connected subset of 5 such that giA) = M\JN, where M and N are

separated. Let g-1(M)=77 and g~1iN)=K. Then A=H\JK, where

HC\K= 0. Since A is connected 77 and K are not separated and

hence one must contain a limit point of the other. Let p be a point of

77 that is a limit point of K. Since SXT is completely normal there

exist open disjoint sets U and V in SX T containing Mand N, respec-

tively.

Let 7? be an open set containing p such that A is not contained

entirely in 7?. By Lemma 1 there is an open connected set W con-

taining p and contained in 7? such that W and F(W) are both con-

nected and giF{W)) C U. Since p is a limit point of K there is a point

q of K in W.
Let Q be the collection of all open connected sets D such that q is

in D, cliD)CW, F(D) is connected, and g(F(D)) C V. The collection

Q is nonempty since / is peripherally continuous at the point q. De-

note by Q* the point-set union of all sets in Q. Then Q* is an open

subset of W. Since the connected set A intersects both Q* and S — Q*,

it follows that A(~\FiQ*)^0.
Since FiQ*)C\A 7*0, then FiQ*) either contains a point of 77 or a

point of K. Suppose there is a point h in FiQ*)C\H. Then there is an

open set E containing h but not q such that F(£) is connected and

g(F(£)) C U. Since h is a limit point of Q*, E must intersect some set

D belonging to the collection Q. Now E(£D since h is in E — D and

D(\_E since q is in D — E. Thus E and D both have points interior

and exterior to one another and F(7?) and F(72) being connected im-

plies FiD)r\FiE)^0. But this contradicts the fact that g(F(D))

CV, g(F(£)) C U and UT\F=0. Hence FiQ*)C\H=0 and there-
fore FiQ*)C\K^0.

Let fc be a point of FiQ*)(~~\K. Now fe is not a point of FiW) since

g(F(l4v)) C C^ and gik) is in V. Thus k is in I47 and there is an open

connected set Wi containing k and contained in W such that FiW/)

is connected, cl(PFi) QW and giFiWi)) C F. Since k is a limit point

of Q* there is a set W2 in the collection Q such that WiC\W2?±0.
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Now form the set W3 referred to in Lemma 2. By this lemma the

set W3 is open, connected, F(W3) is connected, cl(W3)EW, and q is

in W3. Further, g(F(W3)) C V since F(W3) EF(Wi)\JF(W2). There-

fore W3 possesses all the requirements to belong to Q, but W3 is not

in Q since k is in (W3T\F(Q*)). Therefore the assumption that g(A)

is not connected leads to a contradiction. Hence / is a connectivity

map.

Stallings' theorem, [2, p. 253], and Theorem 1 imply, in particular,

that on an «-cell, «^2, into itself there is no distinction among local

connectivity maps, connectivity maps, and peripherally continuous

transformations. Thus, the question posed on p. 752 of [l] and ques-

tion 5, p. 262 of [2] are answered. The following theorem will com-

plete the theory of equivalence of the local connectivity maps and

the connectivity maps of an «-cell, » = 1, 2, • • • , into itself.

Theorem 2. If f is a local connectivity map of the closed unit interval

I into itself, then f is a connectivity map.

Proof. Since/ is a local connectivity map there is an open covering

{ Ua} of 7 such that / restricted to Ua is a connectivity map for each

a. Since I is compact the covering { Ua} can be reduced to an ir-

reducible number of intervals 7i, • • • , In, such that IiC\Ii+i9^0,

and / is a connectivity map on each 7<. Then if K is any connected

subset of 7, K is an interval and P = (Pf\7i)U • • ■ U(PfV„),

where each PPi7,- is an interval contained in 7,-. Thus g(Kr\IA is

connected and since g(Kr\IAC\g(Kr\Ii+i)?±0, g(K) is connected.

Therefore / is a connectivity map.
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