PARTIALLY ORDERED GROUPS OF THE
SECOND AND THIRD KINDS!

A. H. CLIFFORD

1. Introduction. Let G be both a group and a partially ordered set.
An element a of G is called a left [right] conserver if

r=y@x,yEG) =ax = ay[xa b ya]
and a left [right] inverter if
x = y(x,y € G) = ax Z ay[ra Z ya].

We shall call an element of G a conserver |inverter] if it is both a left
and a right conserver [inverter].

If every element of G is a conserver, then G is a partially ordered
group (abbreviated “po-group”) in the usual sense; we shall also say
that G is a po-group of the first kind. 1f every element of G is a con-
server or an inverter, and not every element of G is a conserver, then
we shall call G a po-group of the second kind. A familiar example is the
multiplicative group of all nonzero real numbers with the usual order-
ing. The stipulation that not every element of G is a conserver ex-
cludes the possibility that G be trivially ordered, and it is then clear
that no element of G can be both a conserver and an inverter.

The structure of totally ordered groups (“o-groups”) of the second
kind has been reduced to that of o-groups of the first kind by J. A. H.
Shepperd [1]. (What he calls a “betweenness group” is either an
o-group of the first or second kinds, or a finite group of order 4.) The
first main result of the present note (Theorem 1) is an extension of
Shepperd’s result from o-groups to po-groups. The proof has also
been simplified by avoiding reference to the betweenness relation.

Totally ordered semigroups (“o-semigroups”) of the second kind
have been considered by the author [2] in the commutative case,
and by J. Gilder [3] and K. Keimel [4] in general. Following Gilder’s
terminology, we define a po-group of the third kind to be a group G
endowed with a nontrivial partial order, such that each element of G
is either a left conserver or a left inverter, and also either a right con-
server or a right inverter, and such that G contains an element which
conserves on one side and inverts on the other. Theorem 2 gives a
reduction of these to po-groups of the first kind.
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Added in proof. The author regrets that he was not aware at the
time of writing this paper that a result equivalent to Theorem 1 be-
low had been obtained by J. F. Andrus and A. T. Butson [5] for a
connected po-group of the second kind. The two approaches are also
different, however, that the equivalence of the results is not apparent.
Their subgroup S, is the (directed) po-subgroup of my subgroup H
generated by its positive cone H,.. My subset I_ of G\H is the union
of those cosets of .Sy in G which belong to their subset T, of the factor
group G/S;. Removing their requirement of connectedness actually
simplifies more than it complicates. Thus the six properties (i)—(vi)
which T must have in their Theorem 5 reduce to (i), (iv), (v), and
the requirement that there exists a subgroup H of index 2 in P
(=G/S,) such that Ty <G\H. (Incidently, (v) should read “a+71
=1T1,".) This is an immediate consequence of Theorem 1 below,in
the case H, =0.

2. Partially ordered groups of the second kind. We denote the
identity element of G by ¢, and set

G, ={aEG:azel G-={aEG:ax<el.

For any subset 4 of G, we let 4,=4ANG,, A_=ANG_, and
A= {a—lzaEA}. A (possibly empty) subset 4 of G is called an
upper [lower] class in G if a€A, xEG, and a<x[a>x] imply xEA.
The empty set is denoted by &, and A\ B means the set of elements
of 4 notin B.

By the order dual G* of G we mean the group G endowed with the
dual £* of S(@a=*b=b=a). G and G* have the same sets of left
[right] conservers and inverters.

THEOREM 1. Let G be a po-group of the second kind. Let H[I] be the
set of conservers [inverters) of G. Then H is a subgroup of G of index 2,
and I 1s its other coset. H is a po-group of the first kind, and H, 1is
normal in G. H and I are convex subsets of G, and, by passing to the
order dual of G if necessary, we can assume that H is an upper class
and I a lower class in G. In particular, H, =G, I.=, and I_is a
lower class in G. The set I_ has the following properties:

(N1) I_1snormalinG.

(N2) IZ'=1_.

(N3) I_ contatns H,I_, I_H,, H_.I_, and I_H_.

The order relation < can be described in terms of Hy and I_as follows:

(01) If xEH, yEH, then x<yexy (or yx ) EH,.

(02) If x€1I, y&1, then xS yoxy™! (or yx)EH,.

(03) If x€I, yEH, then x<y=xy™! (or ylx or x~ly or yx™ ) E1_.
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(04) If x€H, y&1, then x =7y never holds.

If H 1s directed, then I_ must be I or . If I_=1, then every element of
I is less than every element of H. If I_= &, then no element of I is com-
parable with any element of H.

Conversely, let G be a group containing a subgroup H of index 2, and
let I=G\H. Assume that H is a po-group of the first kind, and that its
positive cone H is normal in G. Let 1_ be a subset of I having proper-
ties (N1-3). Define < in G by (01-4). This agrees with the given
partial order in H by (O1), and G becomes thereby a po-group of the
second kind such that H[I] is the set of conservers [inverters] of G.

REMARKS. (1) If (N1) and (N2) hold, and if 7_ contains any one
of the four product sets in (N3), then it contains the other three.

(2) Regarding the parenthetical assertions in (03), we note that if
I_is any subset of I satisfying (N1) and (N2), and if any one of the
four products xy~!, y~x, x~'y, yx~! belong to I_, then so do the
remaining three. A similar remark applies to (O1) and (02), since
H, is normal in G.

Proor. Evidently the product of two conservers or of two inverters
is a conserver, while that of a conserver and an inverter is an inverter.
Since the identity element e of G is a conserver, the inverse of a con-
server [inverter]| must be of the same type. From these remarks it is
clear that H is a subgroup of G of index 2, that I =G\ H, and that H
is a po-group of the first kind.

If p€H, and u#&I, then from e¢<p we have w=pu and
e=u"uZu'pu. Thus u'H,uCH,. Since H, is normal in H, this
shows that it is normal in G.

To show that H is convex in G, it clearly suffices to show that
e<u<h(h&H, u&l) is impossible. Multiplying e <u <k on the left
by the inverter %, and on the right by the conserver %, we obtain
u>u?>uh and b <uh <h? But this yields # > uh >k, contrary to u <h.

To show that I is convex in G, suppose that u>h>u'(hEH,;
u, w'€I). Then e<hu—'<wu'u='. Since w'u—'EH and hu—'&I, this
contradicts the convexity of H.

From G =H\UI it follows that H must be either an upper class or a
lower class in G. By passing to the order dual of G, if necessary, we
can assume that H is an upper class. Then I is a lower class. Since
ecH, we have G.CH, and hence H, =G, and I, =¢. I_ is clearly
a lower class in I, hence also in G.

If u€I_ and v&I, then from u<e we have uv>v and
v~ luy <v~lp=e, hence v~ 'uv & [_. Similarly, h~'uhEI_ for every k in
H, which proves (N1). To show (N2), we note that u<e (uE&I)
implies e=uu—1>eu~1=u"1, hence »~'&€I_. By Remark (1), to estab-
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lish (N3) we need only show that H,I_CJI_. From h>e, u<e (hEH,
u€&l), we have hu <eu=u<e, so that hu&c1_.

(01) is a standard fact about po-groups, and (04) is just the asser-
tion that H is an upper class in G. To show (02), we note that x<y
is equivalent to xy~1=e, since y&I. To show (03), we observe that
x =y is now equivalent to xy~!<yy~!=e, since y& H.

If H is directed, then H=H,H_, and (N3) implies that HI_C1_.
I I_#¢f, let ucl_. Then I=HuCI_, whence I_=1.

Turning to the converse, let H be a subgroup of G of index 2, and
let H be a po-group of the first kind such that H, is normal in G.
Let I=G\H. Let I_ be a subset of I having properties (N1-3), and
define < in G by (0O1-4). (O1) asserts that the restriction of = to H
shall coincide with the given partial ordering of H.

That the relation = is reflexive and antisymmetric is clear. To
prove that it is transitive, let x <y and y <z (x, v, 2EG). (04) implies
that if x€H then yEH, and if yE H then zE H. Since we do not need
to consider the case x, v, 2E H, we are left with three cases.

Case x&I,yEH, z€H. By (03) and (0O1) we have x~'y&I_and
y-1iz€H,. By (N3), x"1z=(x"19)(y~2)E1_, and x<z by (03).

Case x&1I, y&1, z&H. By (02) and (O3) we have xy '€H, and
yz—1€I_. By (N3), xz71=(xy ") (yz~)EI_, and x =z by (03).

Case x€1, yE1I, 3&1. By (02) we have xy '&€H, and yz7'1€H,.
Hence xz7 1= (xy~V)(yz~')EH,, and x=z by (02).

Hence G is a po-set under =. All that remains is to show that every
element of H[I] is a conserver [inverter]. Since every element of H
is the product of two elements of I, it suffices to show that every ele-
ment of I is an inverter.

Let u€1, and let x<y. The case x&H, y&I is excluded by (04),
and we consider the remaining three.

Case xCH, y&H. By (O1), xy and yx~'EH,. Hence (ux)~(uy)
and (yu) (xu)~*&€H,, and we infer from (02) that uy < ux and yu Sxu.

Case x&1I, y&1. By (02), xy~! and y~xEH,. Hence (xu)(yu)™!
and (uy)~Y(ux)EH,, and we infer from (O1) that yu<xu and
uy S ux.

Case x&I, yEH. By (03), x~'y and yx~'&I_. Hence (ux)~'(uy)
and (yu)(xu)~'&1_, and we infer from (03) that uy =ux and yu Sxu.

This concludes the proof of the theorem.

Let us consider all possible ways of extending a given po-group H
of the first kind to a po-group G of the second kind, such that H is
the set of conservers of G. In the first place, G must be an extension
of H by the cyclic group C; of order 2; the Schreier theory tells us
how to find all such. Call G “suitable” if H, is normal in G; there is at
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least one suitable G, namely the direct product HX C,. Any suitable
G can be partially ordered in the desired fashion by choosing I_ so
as to satisfy (N1-3). This can always be done by choosing I or & for
I_, and these are the only possibilities if H is directed. If G itself is to
be directed, only I_=1 is possible, and then every element of H
exceeds every element of I. In this case we note that G will be lattice-
ordered or totally ordered if and only if the same holds for H.

If H is trivially ordered, then I_¢f, since G cannot be trivially
ordered. As a simple example with 7_31, let G be the infinite cyclic
group generated by a, let H be the subgroup generated by a2, and let
I_={a, a='}. The resulting partial order on G has a saw-tooth
nature:

> e at>a < e>a<at>at < -

3. Partially ordered groups of the third kind. We define the follow-
ing four subsets of a po-group G of the third kind. Let C;= {0, 1} be
the additive group of integers mod 2, so that 14+1=0. For ¢ and j in
C. let G;; be the set of all elements a of G such that a is a left con-
server if ©=0, a left inverter if =1, a right conserver if j=0, and a
right inverter if j=1.

From the way left and right conservers and inverters multiply,

GiiGri = Gipr,i41 G,7, k1 € Cy).
By definition of po-group of the third kind,
G =Go\J Gn\J G\ Gy, Gou\J G # .

If G and Gy are = ¥, then Gu#=J.

THEOREM 2. Let G be a po-group of the third kind, with G;; as defined
above. Then Gy is a normal subgroup of G, and is a po-group of the first
kind. If Gu =g, then G/Goog Cz. If Gu ¢,®', then G/Googc‘gx Cz, and
Goo\JIGn is a normal po-subgroup of G of the second kind. The positive
cone P of Goo satisfies the following conditions:

(N"1) if aEGow\IGu, then aPa 'CP;

(N’Z) ’Lf aEGmUGm, then aPa“‘QP“.

No two elements belonging to different Gi; are comparable. Within each
Gij, the order relation is given in terms of P as follows:

(0"1) if x, yEGoo 07 x, YEGa, then x Sy=x—1yCP;

(02) #f x, yEGro 0or x, yEGu, then x <yex~lyC Pl

Conversely, let G be a group containing a normal subgroup Hoy, such
that G/How=2Cs or CoX Cs. In the latter event, let H.; be the coset of Hyo
in G mapped into the element (3, j) of CoX Co. Assume that Ho is a
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po-group of the first kind such that its positive part P satisfies (N'1-2),
with G;; replaced by H;;. Define a relation < on G by (0'1-2), similarly
modified, with = never holding between elements of distinct H,;. Then
G becomes a po-group of the third kind, with G;;= H,;. The same holds
in the event G/ H oy w=2C, if we let Hy= 5, and either Hyn= & or Hiy=.

ProoF. The first three sentences are obvious. (N’1) then follows
from Theorem 1. To show (N’2), let pEP and let aEGp. From e<p
we have a <ap, since a is a left conserver, and hence e>apa~!, since
a is a right inverter. Thus apa—'& P~1. The proof for a in Gy, is similar.

We note that the identity element e of G cannot be comparable
with any element of Gy or Gio. For if e <a (¢ EGan), then a <a?since a
is a left conserver, and a >a? since a is a right inverter. The argument
is similar if e >a, or if a EGyo. Moreover, e cannot be comparable with
an element a of Gu. For suppose a <e. Let b&EGn. Then ba <b and
bab—1>e, since b"1EGy. But bab~'EGuGuGn =G, and a <e <bab™!
would violate the convexity of I =Gy in the po-group Goo\JGu of the
second kind (Theorem 1). The argument is similar if ¢ <a.

Now let @ and b be any two elements of G such that a <b. Then
aa~1<ba~! or aa—'>ba"!, depending on whether ¢! is a right con-
server or a right inverter. In either case, ba—! is comparable with e,
and so belongs to Gyo. Hence a and b belong to the same coset Gi;.

To show (0O'1), x S y<e<x~"lyex—1yEP, since x is a left conserver.
As for (0'2), x is a left inverter, and so x Sy=e=x lye=x~lyEPL

Proceeding to the converse, let us introduce the notation P,=P,
Py=P-!, where 0, 1EC,. Then, for any kin C;, P;'=P;1. The modi-
fied rules (N’1-2) and (O’1-2) can then be condensed into single
formulae:

(N if aEH;;j, then aPa='CP,yj;

(O if x, yEHyy, then x Syex—lyEP;.

It is evident that < defined by (O’) is reflexive and symmetric.
If x<vy and y=<z, then x, y, and z all belong to the same Hj,;, and
x~1z=(x"1y)(y~12) EPPrC Pi, whence = is transitive.

To show that H;;=G;j, letaEH;;and let x <y. Then x and y belong
to the same Hy; and x~'y&P;. From (ax)~'(ay) =x"'yE Py, and ax,
ayEHk. 11, (0) gives ax <ay if =0 and ay Zax if 1=1. Since this
is independent of k and I, we conclude that a is a left conserver if 1=0
and a left inverter if 1=1.

From (xa)~'(ya)=a"'(x"'9)aEPiii+y=Puwm+; by (N), and
xa, yaEH ik i41, we conclude from (O') that xa=<ya if j=0 and
ya<xa if j=1. Hence a is a right conserver if j=0 and a right in-
verter if j=1.
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Let H be a po-group of the first kind. We saw at the conclusion of
§2 that H can be extended in at least one way to a po-group G of the
second kind. This is not so if G is to be of the third kind. In fact it is
possible if and only if there exists an automorphism of H the square
of which is inner, and which maps the positive cone P of H into P~1.
This is always possible if H is abelian, since x—x~! is then an auto-
morphism with these properties. But it is impossible if H is a group
every automorphism of which is inner. For example, let H be the
group of rational matrices of the form

G )

with ¢>0, and define P(H) to be the set of all such matrices with
az=1.
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