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SYMMETRIC DOMAINS
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The purpose of this note is to generalize Pick's invariant formula-

tion of the classical Schwarz lemma. For the four classical types of

bounded symmetric domains such a generalization was given by

K. H. Look [3]; the present treatment will be independent of classi-

fication theory and will also include the exceptional Cartan domains.

The results are also independent of the particular realization of the

domain in Cn, they depend only on its structure as a hermitian mani-

fold. The results will therefore be formulated for hermitian symmetric

spaces of noncompact type; these are known to be in one-to-one cor-

respondence with the holomorphic equivalence classes of bounded

symmetric domains. We shall make use of Harish-Chandra's canon-

ical realization of the hermitian symmetric spaces as bounded do-

mains; this could perhaps be avoided, but it makes the proofs con-

siderably simpler.

In the following M=G/K will be a hermitian symmetric space of

noncompact type; the identity coset will be denoted by po, 9 and 1

will denote the Lie algebras of G and K, respectively, and Ha,

Ea, ■ ■ • will be a Weyl basis of q with respect to a Cartan subalgebra

of Q contained in f. By a result of Harish-Chandra there exists a set

A of strongly orthogonal roots of Q such that ct= ^„eA P(P«4-P-a)

is a Cartan subalgebra of the symmetric pair (g, f). So every point

pEM can be represented in the form p = kexp(^2aeAta(Ea-\-E-a)) -p0

with kEK, ta^0.
For any p, qEM we denote by d(p, q) the distance of p and q in

the metric induced by the hermitian structure of M. In any realiza-

tion of M as a complex domain this is the Bergman metric. We denote

by d*(p, q) the Caratheodory distance, which is defined by

d*(p,q) = sup dv(f(p), f(q)),

where F is the family of all holomorphic maps of M into the unit

disc UEC, and du is the Poincare-Bergman distance function on U.

Lemma. Let £=exp(X)aeA £«(Pa4-P-«)) -po, ta^0 (a£A). Then
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/ Al/2

dipo, P) = [ zZ i«)    ,

d*ipo, p) = Max ta-
aS A

Proof. The first statement follows from the known fact that the

orbits of po under one-parameter groups generated by elements of a

are geodesies; thus

exp (s(zZ k)     zZ UEa + £-)) -MO £ * £ ( £ «!)    )
\    V aGA      / aEA / \ \ aGA      /       /

is a geodesic segment in arc-length parameters connecting p0 and £.

For the second statement we use the Harish-Chandra realization

of M as a bounded domain. We denote by <& the set of positive roots of

g which are not roots of t, and by p~ the complex subspace of gc

spanned by the vectors £_„(«£$). The Harish-Chandra realization

r}-. M—>p~ is given for any p = k exp(zZ«e* taiEa+E-a))-po by r)ip)

= ad(&) zZ«ea raE-a, where r„ = tanh i„(aEA). We denote the domain

r/(M) Cp_ by D.
Now let p be as in the statement of the Lemma, and let a0£A be

such that <O0 = MaxaeA ta. We write rO0 = tanh <„„. Let/: M-^U be a

holomorphic function such that fipo) = 0. Defining the function

</>: f7—>?7by 0(z) =fiv~1i^r2arlip))) we have, by the classical Schwarz

lemma, |</>(z)| ^ |z| for all zEU. In particular, for z = raa, it follows

that |/(^)| ^rao. In the definition of the Caratheodory distance it is

sufficient to consider functions fEF such that fipo) =0, since U is

homogeneous. Hence, from what we just proved it follows that

d*ip0,p)£dui0, »•„„)=*„,.

On the other hand, let g: D-^U be defined by gizZ<*e* z«P-«) =ztt0,

and let /i = gon. Then /XEP, and <**(£<,, p)^dvifiip0), hip))
= dp(0, r„0) = £«„, finishing the proof of the Lemma.

Proposition 1. Let M be a hermitian symmetric space of rank I and

let f: M-^M be a holomorphic function. Then, for any p, qEM,

difip),fiq))^l^dip,q).

The constant l112 is the best possible.

Proof. Given any pair of points pi, p2EM we can find an element

g in G such that gpi = p0, gp2 = expizZ*ei.taiEa+E-a)) -p0. By the

Lemma it follows that

difip),fiq)) ?k lll2d*ifip),fiq)) ^ l^d*ip, q) 5£ W'diP, q)
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proving the first statement.

To see that I112 is best possible, let p = exp f(Pao4-P-<*0) -po with

some t>0 and a0 G A. Define g: D —>D by g(X)«e* z«P-«)

= Za0SaeA *-<•, and let/ = 77_I o g o n. By Lemma 1 we have d(po, p)

= t and d(f(po),f(p))=l1'H, finishing the proof.

Remark. The Proposition remains true, by the same proof, for

holomorphic functions /: Mi—>M2 where Mi, M2 are hermitian sym-

metric spaces and I is the rank of M2.

Next we give an infinitesimal formulation of Proposition 1; here

we are also able to prove an analogue of the "strong form" of the

classical Schwarz lemma (cf. [3]). For every pEM we denote by Mp

the space of real tangent vectors at p. Mp is a complex Euclidean

space under the hermitian structure of M, we denote the length of a

vector XEMP by \\x\\.

Proposition 2. Let M be a hermitian symmetric space of rank I and

letf: M-+M be a holomorphic function. Then for all p EM and X EM v

we have ||d/(X)|| ^/1/2I|X||, the constant I112 being the best possible.

If there exists a point pEM such that \\df(X)\\ >: ||X|| for all XEMT,
then f is a holomorphic automorphism of M.

Proof. The first statement follows from Proposition 1. To prove

the second statement, let gEG be such that gp=f(p). Then h = g~1 of

maps M onto itself and keeps p fixed; since g_1 is an isometry, the

hypothesis implies || dh(X) 11 ̂||x|| for all XEMP, and hence |det(d/s)„|
2:1. By a well-known theorem of H. Cartan and Caratheodory (e.g.

[l, Chapter 1 ]) it follows that h, and therefore also/, is a holomorphic

automorphism of M, finishing the proof.

If 1 = 1, we have the following sharper version of the "strong form."

Proposition 3. Let M be a hermitian symmetric space of rank 1 and

dimension n, and letf: M-+M be a holomorphic function. If there exists

a point pEM and n complex-linearly independent vectors Xi, ■ ■ ■ , X„

EMp such that \\df(Xi)\\=\\Xi\\ (i = l, ■ ■ • , n), then f is a holomorphic
automorphism of M.

Proof. Let gGG be such that gp=f(p), and let h = g~1of. By

Proposition 2, (dh)p is a linear contraction of the complex Euclidean

space Mp. Denoting the adjoint transformation by (dh)* it follows

that A = I — (dh)P(dh)* is a positive semidefinite linear transformation

on Mp. By our hypothesis ||^4X<|| =0 (i = 1, • ■ • ,n); this now implies

A =0. It follows that (dh)p is unitary, whence |det(d/?)p| =1, and by
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the above mentioned theorem of Cartan and Caratheodory the proof

is finished.
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A CHARACTERIZATION OF TAME 2-SPHERES IN E3

C A. PERSINGER1

In this note, the tame 2-spheres in E3 are characterized partly in

terms of homology and the arcs they contain. In a similar way, the

compact 2-manifolds with boundary are characterized. If K is a

finite topological 2-complex in E3 and v is a vertex of K, then St v

is the star of v, St v is the open star of v, and Lk » = St v — St v is

the link of v. The trivial 1-dimensional homology group of K will be

denoted by 77i(70= 0.
An ra-manifold with boundary is a separable metric space such that

each point has a neighborhood whose closure is topologically equiv-

alent to a closed ra-cell.

Theorem 1. Let K be a finite topological 2-complex in E* such that

(i) K is connected,

(ii) Lk v is connected for each vertex v in K,

(iii) 77i(7<:)=0, and

(iv) K contains only tame arcs.

Then K is either a disk or a 2-sphere.

Proof. Since K contains no wild arcs and Lk v is connected, each

1-simplex in K lies on exactly one or two 2-simplices in K [l]. Since

Presented to the Society, March 29, 1965 under the title A characterization of tame

2-spheres; received by the editors May 31, 1965.

1 These results form a part of the author's doctoral dissertation written at the

Virginia Polytechnic Institute in 1964 under the direction of Professor P. H. Doyle.


