
EXPONENTIAL SOLUTIONS OF LINEAR SYSTEMS OF
DIFFERENTIAL EQUATIONS WHOSE COEFFICIENT

MATRIX IS SKEW SYMMETRIC

IRVING J. EPSTEIN

1. Introduction and summary. There exists a large literature on the

exponential function of a matrix and on the representation of matri-

ces as exponential functions of other matrices. For only one pair;

A, E of matrices has the relation

E = exp A

been thoroughly investigated, namely when A and E are both con-

stant matrices.

Of much greater interest, however, are the cases where E or A

represent a given set of matrices depending on one or several param-

eters, as for instance when E represents an arbitrary element of a Lie

group. In these cases great difficulties arise if a "global" solution (for

all values of the parameters) is sought for E — exp A, where either E

or A are given and the other one has to be found. Some of the diffi-

culties encountered are, for instance, described in [l] and [2]. A

basic reason for these difficulties is that the eigenvalues of a matrix

E(t) depending analytically on one parameter t are, in general, not

analytic functions of / (as, for instance, in the case of

m - G -D
at t = 0). We present here a type of problem where a global solution

always exists. Let 2(0 be a real skew symmetric nXn matrix de-

pending analytically on the real variable t, and let the proper orthog-

onal matrix 0(t) be defined by the differential equation

(1.1) -0(0= 2(00(0,        0(0) = 7
at

where 7 is the unit matrix.

We shall show that the solution of equation (1.1), 0(0. can be ex-

pressed as

(1.2) 0(0 = eB(1)

where P(0 is an wXw real skew symmetric matrix whose elements are
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analytic functions of the real variable t for all t.

2. We prove the following theorem.

Theorem. ^4ray proper real orthogonal matrix 0(t) whose elements are

analytic functions of the real variable t for all t can be written as an ex-

ponential, eBU), where B(t) is a real skew symmetric matrix whose ele-

ments are also analytic in t for all t.

Since every proper orthogonal matrix whose elements are analytic

in t for all t satisfy equation (1.1) above, we see that the solutions of

equation (1.1) which initially are proper orthogonal can be given by

equation (1.2). For the proof of the theorem we shall need several

lemmas.

Lemma 1. If 0(t) is a realnXn proper orthogonal matrix whose ele-

ments are analytic functions of the real variable tfor all t, then the eigen-

values of 0(t) are also analytic in t for all t.

Proof. The eigenvalues all have absolute value one. Since our OO)

is a real matrix, complex eigenvalues occur in pairs, X and X its con-

jugate. From this we see that our characteristic equation for 0(t) is a

reciprocal equation. The substitution ju = §(X+l/X) reduces this

equation to an equation of degree ra/2 if ra is even. If ra is odd XO) = 1

is always an eigenvalue. Dividing our equation by (X— 1) there results

again a reciprocal equation of even degree. In both cases we obtain

an equation

(2.1) M' + ciitW-1 + • • • + cn(t) = 0

whose coefficients d(t) are analytic functions of t for all t and whose

solutions are real and bounded for any real t. This follows from the

fact that any solution of equation (2.1) is equal to a{t) where XO)

= a(t)-\-ib(t), and a(t) and bit) are real.

In the neighborhood of any fixed t0 we have the following: the

solutions of equation (2.1) are given by

(2.2) m(t) = m.-Oo) + E «»0 - to)'""';       * - 1, 2, - • •, J.

Here Hi(to) are the solutions of equation (2.1) corresponding to t0. The

a\ are constant coefficients and m{ is a positive integer with jra.gZ. Of

course, m{ gives the multiplicity of the root Hi(t0). Let us write equa-

tion (2.2) as follows

. . /*•(<)   ~ M.Oo) i A      i v-l/mi
(2.3) —-—— = ai + 2_, a,(t - t0)

0  -  lo)Um< v-2
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Now the left-hand side is real for real t. The summation on the right

can be made arbitrarily small for (t —10) sufficiently small. These two

facts show us that a{ is real. In a similar manner we establish that all

a\ are real.

By (t — to)llmi we mean one determination of the m,-th root of

(t — to). All determinations are given by

P'(t ~ to)llmi,       j = 0, 1, • • • , Mi; - 1

where p is a primitive W;th root of unity. Since all a\ are real this last

requires that a*=0 if v is not a multiple of W;. But then equation (2.2)

tells us that the real part of X(0, a(t) =u(t) is analytic in t for all t.

Finally, since b(t) =(1— a2(t))112 and since a(t) has a maximum at

those values t where it is +1 and a minimum at those values of t

where it is ( — 1) one can easily show that b(t) is also analytic in t

for all t. It follows that X(0 =a(t)-\-ib(t) is analytic in / for all t.

Lemma 2. To each eigenvalue X(0 we can determine an eigenvector

Z(t) =x(t)+iy{t) which is analytic in t for all t. Moreover, if \{t) is

complex valued, then x(t) and y{t) are unit vectors which are orthogonal

to each other for all t.

Proof. Let X(0 be a fixed eigenvalue. For each value of t it is a root

of the characteristic equation, occurring with some multiplicity m.

Let r denote the smallest value of the multiplicity m, occurring at

some fixed to. Clearly X(0 has multiplicity r in some neighborhood of

to- We now consider the following matrix:

an(t) — X(0 ai2(0 ai»(0

O2i(0 a22(0 — X(0 a2n(t)
(2.4)     0 - XI =

ani(0 an2(t) ann{t) — \{t)

If r = n the result is trivial. We assume r?±n. Since X(0 has multi-

plicity r in some neighborhood of to, we know that the rank of the

matrix 0— X7 is n — r in some neighborhood of to. (This follows from

the fact that since 0 is orthogonal it is normal and for normal matrices

the dimension of the null space of (0 — X7) is equal to the multiplicity

r of the eigenvalue X(O-) There is no loss of generality in assuming

therefore that the determinant A formed from the first (n — r) rows

and columns of the matrix (0—X7) does not vanish in some neighbor-

hood of to-
We consider now the following system of equations
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(au -\)Wi + auW2 + • • • + a1,n-rWn.r + • • ■ + ainWn = 0

a2iWi + (a22 - \)W2 + • • • + a2,n_,WVr + • ■ • + a2nWn = 0
\i. o)

an-r.iWi + a„-T,2W2 + • • • + (an_r,„_r - X)IT„_r + • • •

+ a„_r,nJF„ = 0.

Since A(/)^0 in some neighborhood of t0, we can solve for Wi, W2,

• • • , Wn-r in terms of the remaining W's. If we now set Wn-r+i

= Wn-r+2= • ■ ■ = Wn =A then we have a vector W = (Wi, W2, ■ ■ ■ ,

Wn) which does not vanish in some neighborhood of to and is analytic

everywhere. Since each of the last r rows of the matrix (0—X7) is a

linear combination of the first n — r rows we see that the vector

W={Wi, ■ ■ ■ , Wn) is an eigenvector of (0—X7) in some neighbor-

hood of to- Now {0—X7) is analytic everywhere. Also the vector W

is analytic everywhere. Hence the relation (0—\I)W = 0 which holds

in some neighborhood of t0 holds in fact everywhere. The vector W

cannot vanish on any interval as this would imply that it vanishes

identically. However, W can vanish at isolated points. At these values

of t where W vanishes it could not be regarded as an eigenvector.

We consider now the vector W given by

_     (Wi   w2 wn\
W = I-, -> • • • i —-I

\ p      p p /

where

in \   1/!

p = \ 12 («. + »<) [

and where u, and v{ are the real and imaginary parts respectively of

Wt.
We show that the vector W is never zero. It is clear that W is not

zero at those values of t where W is not zero. We consider W at some

value t where W vanishes. There is no loss of generality in assuming

this value of t to be t = 0.

Since each Ui and vt are analytic everywhere, we have

oo

«t(0 = zZ   ai t   where aXi   9± 0;        i = 1, 2, ■ ■ • , n,
i-U

oo

"«•(<) = zZ   bj t   where bmi t± 0;       i = 1, 2, • • • , ra.
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Let

y = mm j ah ,bmi\.
t

There is no loss of generality in assuming that a® is our minimum.

We consider the first component of the vector W, namely Wi/p.

We have

W\ Mi + ivi

~ ~ /«.((«<»)» + • • ■ )w*  '

Clearly the real part of this last expression is not zero since ajf^O

and the square root is different from zero. This proves that the vector

W is never zero. Like W we see that W is analytic everywhere and

moreover it is an eigenvector of 0— X7 for all t.

If X(0 is complex valued for t = h then it follows1 that the real and

imaginary parts u = (u\, ••■,«„) and v = (v\, ■ ■ ■ , vn) of W are

orthogonal to one another and of equal length ({ ^2«?} "2 = { ̂ 2^}1/2)

in some neighborhood of t\. Since u and v are analytic everywhere

these relationships hold for all t. It is clear that in this case the vector

Z(t)=x(t)+iy{t) with

/a      "^        a      /a      ^       v. ;      /\-A1/2      /^A1/2x(t) = -    and    y(t) = -    where    I = (2_,#t)      = (2-,vi)
I If

meets the requirements of Lemma 2.

If X(0 is always real then the same argument establishes the ex-

istence for all t of a real unit eigenvector x{t).

Lemma 3. Let ai(t), a2(t), ■ ■ ■ , <xa(t) be s <n real orthonormal vectors

which are analytic in t for all real t. There exist n — s additional real

vectors a,+i, • • ■ , an such that the set of n vectors ct\, ■ ■ ■ , an are an

orthonormal set which are analytic in t for all real t.

Proof. We show how to obtain the vector a3+i. Let /3(0 = 03i, • • ■ ,

/3„). Consider the matrix given by

an    an ■ ■ • ain

«2i    a22 • • ■ a2n

(2.6)

a,i    a,, • • ■ a,„

where a<(0 = (a,i, ai2, • • • , ain);    * = 1, 2, • • • , s.

1 S. Perlis, Theory of matrices, Addison-Wesley, Cambridge, Mass., 1952, p. 200.



1966] LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 53

The rank of this matrix is s since the 5 vectors ai, • • • , a, are

linearly independent for all t. We assume then that the determinant

d formed from the first s rows and columns of this matrix is not zero

in some neighborhood, say t0, of t. The system of equations

CX1101   +   «12/82   +   •   •   •   +   CXln$n   =  0

(2.7) .

a,i/3i + as2/32 + • • • + a,nfa = 0

can then be solved for /3i, fa, ■ • • , (3, in terms of the remaining fas in

some neighborhood of t0. Set fa+x = fa+2= ■ • ■ = fa=d. We obtain
/3 = (ft, • • • , fa,) which is analytic everywhere and does not vanish in

some neighborhood of t0. The vector fail where l = iz2$tYn *s never

zero, is analytic in t for all /, is of unit length, and is orthogonal to

ai, • • • , a, for all t. This proves Lemma 3.

With the aid of these lemmas the proof of our theorem can now be

established by induction. It is easy to show that any 2X2 real proper

orthogonal matrix 02(t) whose elements are analytic in t for all t is

orthogonally similar to

0,(0 - ( ■» m).
\-b(t)    a(t)J

We have P~x{t)02{t)P{Jt) =(520) where Pit) is real and analytic in t

and proper orthogonal and where a and b are real and analytic for

all t and of course a2+b2 = 1. Assume that any real proper orthogonal

matrix of order r less than ra whose elements are analytic for all t

is orthogonally similar to OT0)=diag(7?„ &,-••, Cm) where Rq

= diag(ri, • • • , rg) is real and

(a,    b,\
1 ;       i = I, 2, ■ ■ ■ , m.

— bt   o,/

We assume therefore that there is a real proper orthogonal matrix

Pit) whose elements are analytic for all t such that P~lOrP =0T. The

elements Tj, at, bt are real and analytic for all t. We have r = q+2m.

Now consider the matrix O„0) where ra is its order. By Lemma 2

there exists, if \(t)=ai+ibi is complex valued for some t, an xO)

and yO) which are real and analytic and orthonormal for all t. By

Lemma 3 we can find ra — 2 additional vectors which are analytic in t

and which, together with x and y, form a set of ra real analytic ortho-

normal vectors.

Construct the matrix 5 with these vectors as the column vectors

and so chosen that det 5=1. We have
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(A    0     \ /   ax   bA
S-'OnS = I )    where    A = I )

\0     On-J \-bi   a J

and where 0„_2 is real proper orthogonal and analytic for all t. By the

induction assumption there exists a <2„_2 which is real proper orthog-

onal and analytic for all t such that Qn~-2On-2Qn_2 = On-2. The matrix

/72      0   \ /l    o\
Qn = ( )    with    72 = ( )

\0        Qn-J \0       1/

is proper orthogonal and analytic for all t. Set Pn = SQn we have

Pn'OnPn = Q^S-WJSQ* = 0„ = diag (Ps, Ci, • • • , C«) where P.
= diag (ri, r2, • • • , rs) and

/   at    bA
d-. = ( )       for « = 1, 2, • • • , *.

\ — bi   aif

Of course s + 2t = n and a, and &, are the real and imaginary parts of

the complex eigenvalue X,(0- Now each

d = e?iJ   where   / = ( J
\-l    0/

and |8(0 is analytic in t for all /. If ( — 1) is an eigenvalue of a proper

orthogonal matrix then it has even multiplicity. Hence

P, = diag(e", ewj, ■ ■ ■ , e'J, e°, e°, ■ ■ ■ , e°).

(If — 1 is not an eigenvalue we omit e*J and if +1 is not an eigen-

value we omit e°.)

If follows that

On = diag(eIJ, • • • , eTj, e°, ■ ■ ■ , e°, ehJ, • • • , ePS)

= exp[diag(7r/, • •• , vJ, 0, • • • , 0, 0J, • ■ ■ , /?«/)] = eT

where P = diag(ir/, • • • , wJ, 0, • • • , 0, ft/, • • • , j3tJ).
Since PB_10„Pn=On = er, we get On = er'TP'~\ With j3 = P„PP„-1 this

establishes our theorem.
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