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Introduction. The abstract varieties (also called manifolds) of

difference algebra [2], [3] have not heretofore had a realization as

sets of functions comparable to the realization provided for differen-

tial manifolds by the analytic existence theorem for differential equa-

tions (see [4], particularly p. 23). It is the purpose of this Note to

provide such a realization by means of an existence theorem yielding

solutions of difference equations as complex-valued functions defined,

except for isolated singularities, on the non-negative real axis. Since

the abstract varieties consist by definition of elements lying in inte-

gral domains, these functions are required to generate difference rings

which are integral domains. This distinguishes the existence theorem

from the mere use of the difference equation as a recursion relation.

In addition, the functions studied here are piecewise analytic, though

discontinuous. There is no reason to regard the class of functions

selected in this Note as definitive: other choices may better repay fur-

ther study. It would, in particular, be interesting to know whether

one can obtain continuous solutions. This question is discussed briefly

in the next to last section. The concluding section provides a partial

analogue of an important approximation theorem of differential alge-

bra ([4, p. 123]). The notation and terminology are as in [3], and an

earlier discussion of the problem with particular reference to mero-

morphic solutions will be found there, on pp. 114 and 242.

It might seem natural to seek solutions defined only on the integers,

rather than on a half-line. But this is not possible. The only solutions

of the difference polynomial yyi —1 which are complex-valued func-

tions on the integers and generate difference rings which are integral

domains are also solutions of y2 — 1. Yet the abstract variety of yyi — 1

is not contained in that of y2 — 1. Alternatively, it is very likely pos-

sible to obtain suitable solutions as functions from the integers to a

ring of functions of one or more variables. This amounts to finding

solutions defined on the integers and involving arbitrary constants.

Definitions and statement. A complex-valued function/(x) is to be

called a permitted function if it is defined for x 2: 0 except at a set S(/)
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which has no limit points, is analytic in each of the intervals into

which the non-negative real axis is divided by omission of the points

of S(f), and is either identically 0, or is 0 at only finitely many

points in any finite interval.

A permitted difference ring is a difference ring P whose elements are

permitted functions, and whose transforming operator is the map

f(x)—>/(x4-l), f(x)ER- (More precisely, the elements of P are equiv-

alence classes of permitted functions, with f(x) equivalent to g(x)

if they coincide except on S(f)[US(g). It follows from the definition

of permitted functions that the map/(x)—*f(x-\-l) is an isomorphism.)

A permitted difference ring which is a field is called a permitted

difference field. Evidently, a permitted difference ring has a quotient

field which is a permitted difference field.

Henceforth, P0 will denote the difference field of rational functions

with complex coefficients and with the transform of f(x) defined to

be/(x4-l),/(x)GPo. Then K0 may be regarded as a permitted differ-

ence field by restricting the domain of its members to x^O. Let X

be the set of permitted difference fields containing P0. Let 3C* be the

subset of X defined as follows: K~EX* H K~EX, and there exists an

infinite set of functions analytic throughout [0, 1 ] which is algebra-

ically independent over K (here regarded as a field of functions over

[0, l]). One can easily obtain a nonenumerable set of functions ana-

lytic on [0, 1 ] which is algebraically independent over P0, for exam-

ple by selecting functions with distinct isolated essential singularities

not on [0, l]. It follows that any member of X which is at most

enumerably generated over P0 is a member of X*.

A system 3TI of difference overfields of a difference field M is called

complete over M [3, p. 114] if, given distinct perfect difference ideals

Si and S2 of a polynomial difference ring over M, there exists 7VG3TC

such that the set of solutions of Si with coordinates in N is distinct

from the set of solutions of S2 with coordinates in TV.

Theorem I. Let KEX*. X is a complete system of difference over-

fields of K.

It follows from the criterion for complete systems in [3, p. 242],

that to prove Theorem I it is sufficient to prove the following exis-

tence theorem.

Theorem II. If S is a reflexive prime difference ideal of the simple

polynomial difference ring PJy}, KEX*, and 1 GS, then S has a

generic zero in one of the members of X.

Proof of the existence theorem. Suppose S^{o}, and let Aw,
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Aw, ■ ■ ■ denote a characteristic sequence (defined in [3, Chapter

VI, §20], and in [2, p. 145], where they are called basic sequences)

of 2. Let the order of 2 and, hence, of Am be r. It will be shown that

there exist functions/*0, i = 0, 1, • • • , such that:

(a) Each/(i) is defined and complex-valued on [0, l], except at

the points of a finite set P(i).

(b) Each /(i) is analytic in each of the subintervals of [0, l] in

which it is defined.

(c) Let PEK{y} be of order 5. If PE2, then the substitution

yi=f<*\ i = 0, ■ ■ ■ , 5, annuls P at each point of [0, l] at which

/«•>, • • • , /(,) and the coefficients of P are all defined. If PE2, this

substitution fails to annul P except at a finite subset of [0, l].

The/(i) will be constructed inductively. If r>0, choose/(0), • • • ,

f(.r-i) t0 De functions analytic on [0, 1 ] and algebraically independent

over K (regarded as a field of functions over [0, l]). This is possible

since AE3C*- Then (a), (b), and (c) hold for s<r.

Suppose/(0), • • • ,fm, h^r — l, have been selected so as to satisfy

(a), (b), and (c) with s^h. Let B denote the polynomial obtained

from A<-h+1~r) when the y„ O^i^h, are replaced by the corresponding

f(i). Since the initial and the yft+i-discriminant of Aih+1~r) are not in

2 ([3, Introduction, Theorem XXXII]), B is a polynomial of positive

degree in y^+i whose initial and discriminant vanish at only finitely

many points of [0, l]. Let P(/z + l) denote the points of [0, l] at

which either some coefficient of B is undefined or the initial or dis-

criminant vanishes. There exists an analytic solution of B = 0 on each

of the open or half-open subintervals into which [0, 1 ] is divided by

the points of TQt + l). Let/tA+1) be the function which is composed of

these solutions. Then/(,1+1) satisfies (a) and (b).

LetPEP{y} be of order h + l. If PES, JP = L, where P is a linear
combination of the polynomials Am, ■ ■ ■ , Aih+1~r'> and J is a prod-

uct of powers of the initials of these polynomials. It follows that the

substitution y,=/(i), i = 0, ■ ■ ■ , h+l, annuls P at all points of [0, l]

where the relevant functions are defined except, perhaps at those

which are zeros of J. Since J is of order at most h and is not in 2, the

induction hypothesis shows that this set is finite and P is annulled

at these points also. Hence, the first statement of (c) is satisfied for

s = h + l. If PE2, there exists a polynomial 77 E2 of order at most h

which is a linear combination of P and A(0), ■ ■ ■ , Aih+1~T). By the

induction hypothesis the substitution y,=/(i), i = 0, ■ ■ ■ , h, annuls

H at only finitely many points. Hence, the substitution ys=/a),

i = 0, • • • , h + l, annuls P at only finitely many points. This com-
pletes the proof of (c).
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Let I x I denote as usual the greatest integer not exceeding x, where

x is non-negative; and let x* = x—| x]. Let /(x) =/(|l|)(x*). Then f(x)

is defined for x^O, except at a set S(f) which has no limit points,

and is analytic in each of the intervals into which the non-negative

real axis is divided by omission of the points of S(f). Let P be the

ring formed by adjoining/(x),/(x4-1), • • • , (all restricted to xS;0)

to P. If PEK {y}, and t is non-negative, then the result of substitu-

ting f(x-\-i) for yi, i = 0, I, • • • , in P and evaluating at t is the same

as the result of substituting/(i) for y„ i = 0, 1, - - • , in P\t\ and evalu-

ating at t*. It follows from (c) that if PGS one obtains 0 for every

t^0 for which the relevant functions are defined; but if PG2, one

obtains 0 at not more than a finite number of points in any finite

interval.

Let g(x)ER, and assume that there is a bounded infinite subset I

of x^O such that g(x)=0, xG7. There is a difference polynomial

PGPJy} such that g(x) is found by substituting f(x) for y in P.

By the second part of the conclusion of the preceding paragraph,

PGS. Hence, by the first part of the conclusion, g(x) =0. Therefore

P consists of permitted functions and is a permitted difference ring.

The quotient field P of P is in X. The conclusion of the preceding

paragraph also shows that P contains a generic zero, namely f(x),

of S.
If S= {o}, the construction used above for the /Ci), i<r, is ex-

tended to all i, and/(x) is then defined as before.

If the functions of P can be extended to x<0 with the obviously

needed properties, as when P = P0, then it is not at all difficult to

modify the procedure for constructing f(x) so as to obtain a function

defined on the entire real line except for isolated points. Thus one

finds a generic zero of S in an inversive difference field [3, p. 57] con-

sisting of functions defined except for singularities on the real line.

Continuity. A function /(x) defined on the non-negative real axis

except at a set 5 which has no limit points will be called essentially

continuous (e.c.) if either it is identically 0 or it is continuous at each

point in the complement of S, and l//(x) has limit 0 at each point of

5. The preceding construction may fail to yield e.c. functions. Though

one could meet the requirements for essential continuity in the inte-

riors of the intervals between integers, there seems to be no control

over the behavior at the integers themselves. It would certainly be

interesting to remove this deficiency.

Some idea of the problem involved in obtaining essential conti-

nuity can be obtained by considering the special case in which S is of
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order 0 and the coefficient field is K0. We retain the earlier notation

and also use 911 to denote the variety of 2, and a to denote a solution

of 2 in the abstract sense. (Since the order is 0, a is a generic zero

of 2.)
The polynomial Aw is necessarily of order 0. Its variety '31 may

have more than one irreducible component. ([3, Chapter VIII,

Example 2], with rational coefficients replaced by complex coeffi-

cients. Let A(0) have the solution \/x + \/ix+t).) Let us assume for

the moment that 31 has only the component 3TC. In this case the A(i)

are transforms of Aw, and it is easy to see that each /Ci) may be ob-

tained from the Riemann surface of A(0). In particular, choosing a

continuous curve in this surface which covers the non-negative real

axis, the corresponding values of y, where finite, furnish values of

fix). The function fix) so obtained is essentially continuous and is

continuous for all sufficiently large x, and this is, indeed, true of every

element of K0(fix)).

It will be shown that, in particular, if a is normal over K, then 91

has only one component. Let 9TC* be a component of 91 and a* a

generic zero of 9U* in some abstract difference overfield of K. Let P

be the inversive closure of K0(a) and M the inversive closure of

KB(a*). Of course, the underlying fields of L and M axe AVisomorphic

and normal over K0. Let AoCAiC ■ ■ ■ EKr ( = P) be the Babbitt's

decomposition [l, Theorem 2.3] or [3, Chapter VII, Theorem VII]

for P. Suppose that for some i, 0^i<r, it has been shown that there

exists a Ao-isomorphism <pi of Ki into M. By definition, if t>0, and

from either the proof of Theorem 2.9 of [l ] or from Theorem XIX of

Chapter IX of [3] if i — 0, A,-+i/A,- is equivalent to a benign extension

with, say, minimal standard generator mt. We may choose m,GK,-+i.

Now 4>i extends to an isomorphism of the underlying field of L onto

the underlying field of M. Let ra, be the image of mt under this iso-

morphism. It follows from the Corollary to Theorem VI of Chapter

VII of [3] that <pi extends to a difference isomorphism of Ki{m/) onto

(</>iK/)(ra,-), and, hence, to a difference isomorphism of Aj+i into M.

Since <p0 exists (it is the identity) it follows by induction that L and M

are A0-isomorphic (in the difference field sense). Then 311 = 911*, and

9H is the only component of 91.

We now relinquish the hypothesis that a is normal over K0. It

follows from [3, p. 216] that K0(a) is contained in a difference field

K0(c), where c is algebraic and normal over A0- Let II be the difference

ideal of K0 {y} with generic zero c. The results of the two preceding

paragraphs show the existence of a generic zero c of n in a member of

K whose elements are continuous for sufficiently large x and essen-
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tially continuous. Let <j> be the P0-isomorphism from K0(c) onto

K~o(c) such that q>c = c. Then <j>a is a generic zero of S. This proves

the following theorem.

Theorem III. If S is a reflexive prime difference ideal of K0 {y}, and

the order of S is 0, then S has a generic zero in a member of K each of

whose elements is continuous for sufficiently large x and essentially

continuous.

Approximation. Let S denote a set of permitted functions, and let

g(x) be a permitted function. Then g(x) is said to adhere to S at p ^0,

if g(pA-i) is defined, i = 0, 1, • • • , and for each e>0 and positive

integer t there exists h(x)E$> such that h(pA-i) is defined and

\g(p-\-i)—h(pA-i)\ <«, i = 0, ■ ■ ■ , t. If p is a point of adherence, so

is pA-t, t = 0, 1, • • • .

Suppose S is a difference ideal of K {y}, KEX, S a set of solutions

of S in overfields of K which are members of 3C, and g(x) a permitted

function such that the set C of points of adherence of g(x) to S is

dense in x2:0. Then g(x) is a solution of S. To prove this we note

that without loss of generality we may assume g(x)=0. Let ^4GS.

Then A =BA-b(x), where B admits the solution 0 and b(x) is a per-

mitted function. If cEC is a point at which the coefficients of A are

defined it follows from the definition of adherence that b(c) =0. Then

b(x) is 0 at a set of points dense in some interval. By the definition of

permitted function b(x) =0, so that 0 is a solution of A.

If in particular P = P0, g(x)GPo, then it is sufficient to know that

g(x) adheres to S at just one point p. For then b(x) is a rational func-

tion such that b(p-\-t) = 0, < = 0, 1, • • • , except possibly at the set of

points at which some coefficient of A is undefined. This set is finite,

so that b(x) =0.

The following approximation theorem permits an implication in the

opposite direction.

Theorem IV. Let S be a reflexive prime difference ideal of P jy},

KEX*, and let g(x) be a solution of S in a member of X containing K.

Let S denote the set of generic zeros of S in members of X containing

K{g(x)). Then g(x) adheres to & at a set of points dense in x j^0.

Proof. If S= [l] there is nothing to prove. If S= [0] and g(x) is

a generic zero of S, then g(x)E§>, so that the conclusion is trivial. In

the remaining cases, g(x) satisfies a nonzero difference polynomial of

P {y} so that the degree of transcendence of P(g(x)) over K is finite

[3, Chapter II, Theorem VIII]. Hence, K(g(x))EX*. We assume

henceforth that S is neither [0] nor [l]. The case S= [0], g(x) not a
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generic zero, is treated by a modification as at the end of the proof

of Theorem II.

Let Am, A(1), • • ■ be a characteristic sequence of S. Let r denote

the order of S. For each positive integer 5 let P(s) denote the product

of the initials and yt+r-discriminants of the^4(i), i^s — r, or letP(,) = 1,

if s<r.

Let J be any open set in [0, 1 ]. We must find in J a point of adher-

ence of g(x) to S. Let 70 be a nondegenerate closed interval contained

in J. We shall construct inductively a sequence 70, Ii, • • ■ of non-

degenerate closed intervals each contained in the preceding. Suppose

that, for some s>0, 7,_i has been obtained. Let q be an interior point

of 7,_i such that g(x) and the coefficients of Aw, ■ ■ • , .4c'-r) are de-

fined and analytic at q. Let C be a circle in the complex plane with

center q such that these functions are defined and analytic through-

out C, and the intersection of C and the real axis is contained in 7s_i.

The prime ideal 2,P\P[y, • • • , y,] of the ring K[y, ■ ■ ■ , y„] does

not contain DM and admits the solution yi = g(xA-i), i = 0, ■ ■ ■ , s.

Let K' denote the field generated by the coefficients of Am, ■ ■ ■ ,

A<-'~T) as functions in C, and 2/ the prime ideal 2sP\P'[y, • • • , y,]

of P'[y, • • ■ , y,]. Then 2- admits the solution y< = g(x4-i), i = 0,

■ ■ • , s, does not contain Dw, and does contain Aw, ■ ■ ■ , A<-'~T).

By a theorem due to Ritt [4, p. 103] there exists an open subset C

of C such that 2/ has a solution y, = /?»(x), i = 0, ■ ■ ■ , s, analytic

throughout C and not annulling D(') at any point of C, such that

I ht(x) — g(x4"i) I gl/s, xEC, i = 0, ■ ■ ■ , s. Furthermore, an exam-

ination of the proof of this theorem shows that C may be chosen to

intersect the real axis. Let 7„ be a nondegenerate closed interval con-

tained in this intersection.

Let pGH, 7„. Given a positive integer t there exist complex num-

bers y0, • • • , yt such that:

(1) \y<-g(P+i)\ <l/*,* = 0, ■ ■ ■ ,t.
(2) The substitution x = p, yt = yi, i = 0, ■ • • , t, annuls ;1(0), • • • ,

(3) The substitution in (2) does not annul P(0.

It will be shown that the functions /ci) of the proof of Theorem II

may be chosen so that f(i)(p) =y<, 0 gi:£/. This is clearly possible for

i<r, since to the functions selected as in the proof of Theorem II to

be algebraically independent over K(g(x)) one may add suitable con-

stants to obtain the desired values at p. Suppose/(0), • • • , fm have

been so selected, where r — l ^h<t. Then on replacing the y; by the

/(i), Ogig/f, in j4(*+!-•■) and P»(A+1) we obtain polynomials B and P

respectively in yn+i, with coefficients analytic at x, such that B is
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annulled and E is not on putting x = p, yh+i = yh+i. Hence, f(-h+1) may

be chosen to assume the value %+i at p. Completing the construction

of Theorem 11 there results a generic zero fix) of 2 in a member of X

such that \fip+i)—gip+i)\ <l/t, t = 0, • • • , t. This is sufficient to

show that gix) adheres to S at p.
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