
RETRACEABLE SETS AND RECURSIVE PERMUTATIONS

T. G. MCLAUGHLIN

1. By a recursion property of sets of natural numbers, we mean a

property preserved under all recursive permutations of the natural

numbers; while by a weak-recursion property we mean one which is

preserved under recursive equivalence (see [l]). It is known [l] that

regressiveness is a recursion property and even a weak-recursion prop-

erty. We shall prove here that the property of being retraceable fails,

by contrast, to be a recursion property, even for sets with recursively

enumerable complement. (It is known from [l] that retraceability

is not a weak-recursion property.) Our basic terminology and nota-

tion are as in [l].

We shall repeat here, for the reader's convenience, the definition

of retraceability and regressiveness of sets of natural numbers. An

infinite set a of natural numbers is regressive <^=> there is a nonrepeti-

tive ordering a0, ai, a2, ■ • ■ of the elements of a, and a partial re-

cursive function p whose domain includes a, such that pia0) =a0 and

(Vra) ipian+i) =an). a is called retraceable provided it is regressive

with respect to the ordering of its elements in increasing order of

magnitude.

2. It is known [l, Proposition 10] that any recursively enumerable

set with regressive complement is isomorphic to a recursively enumer-

able set whose complement is retraceable ("isomorphic to" meaning,

of course, the image of—under a recursive permutation); hence, to

establish the result claimed in §1, it suffices to exhibit a recursively

enumerable set whose complement is regressive but not retraceable.

This we shall now do.

Theorem. There exists a recursively enumerable set fi such that fi',

while regressive, is nonretraceable.

Proof. Let {pnix)} be the usual effective enumeration of the par-

tial recursive functions of one variable, and let "P„" denote the

cumulative outcome of performing the first ra steps in some fixed

effective procedure P for generating precisely all correct equations

pqik) =r. With each function pn we associate a marker An. The set fi,

together with a recursive regressing function / for fi', is constructed

by stages as follows.

At Stage 0. Place (2, 1), (1, 3), (3, 0), and (0, 0) in/, attach A0 to

3, and proceed to Stage 1.
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At Stage s, s>0. Let Aj be the marker of largest index which is

attached to a number at the end of Stage s — 1; we assume, as an in-

ductive hypothesis (it will be easily seen, when the description of

Stage s is complete, that the assumption persists from stage s to

Stage s-f-1), that A0 is one of the attached markers and that, indeed,

all of Ac, Ai, • • • , Af are attached at the end of Stage 5 — 1. Now

examine P.. If P, discloses that po(3) =2 and if 2 has not previously

been placed in 8, then (a) place 2 in B, (b) erase all markers Ay for

t^j>0, (c) place in B all numbers m, m — l, m — 2 such that m was

the position of a marker erased in (b), (d) attach Ai to w + 2, where n

is the smallest number not previously placed in the domain of /,

(e) place (w + 2, 1), (w + 1, n), and (n, « + 2) in/, and, finally, (f) pro-

ceed to Stage 5 + 1. Otherwise: if r 2:1, check to see if P, discloses that

pi(k) =k — l where k is the number to which Ai is attached and k — l

has not previously been placed in 8. If so, then (a) place k — 1 in

8, (b) erase all markers Ay for t^j>l, (c) place in 8 all numbers q,

q—l, q — 2 such that q was the position of a marker erased in (b), (d)

attach A2 to m + 2, where m is the smallest number not previously

placed in the domain of/, (e) place (m + 2, k — 2), (w + 1, m), (m, m + 2)

in/, and, finally (f) proceed to Stage 5 + 1. But otherwise, iterate the

foregoing procedure until either (i) some alteration of marker positions

and membership in 8 has been made and we have been ordered to go to

Stage 5 + 1, or (ii) all the positions of A0, • • • , A( at the end of stage

5 — 1 have been scrutinized, with no such alterations having been author-

ized. In case (ii), let u be the least number not yet assigned to the do-

main of /; attach Ai+i to uA~2, and place in / the pairs (w + 1, u),

(u, m + 2), and (w + 2, I*), where I* is either one or two less than the

position h of A( according as the number one less than h has not or

has been placed in 8; then go to Stage 5 + 1.

This completes the description of the construction; clearly B

(= the set of all n placed in 8 at some stage 5 5j0) is recursively

enumerable.

Remark. At the end of Stage 5, exactly the numbers 0, 1, 2, • • ■ ,

3(5 + 1) have been assigned to the domain of/.

Proof. Trivial, by induction on 5. The proof of the theorem is com-

pleted by a sequence of three straightforward lemmas.

Lemma A. Every marker Ay, 7 5:0, eventually becomes permanently

attached lo some one number n,, and nj is of the form 3k, k>0.

Proof. This is obtained by a routine induction on/. (In particular,

we must have «o = 3.)

Lemma B. 8' is regressed by f.
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Proof. We first note that (as is clear from the construction and

Lemma A), fi' consists of the numbers 0, n, (see Lemma A), n}— 2,

and, provided pjin/) r^n,— 1, also ra,-— 1. From the description of Stage

0 we see that/(0) = 0, /(ra0) =/(3) = 0,/(n0-2) =/(l) = 3, and/(ra0-1)

=/(2) = 1. From the description of Stage s, we further have, for each

_7>0, that /(ra;-— 2) = ray, /(ra — 1) =«,— 2, and fin/)=nj-i — 2 or

«y_i — 1 according as ray_i — 1 is or is not in fi. Thus, / does indeed

regress fi'.

Lemma C. fi' is not retraceable.

Proof. Suppose that pk retraces fi'. Let s be a stage such that all

At, t g k, are in their final positions prior to s, all numbers g the posi-

tion nk of A* which are destined for membership in fi have already gone

into fi, and P. discloses that pkink) =r = the next smaller member of

fi'. If r = nk — 1, then nk — 1 must be placed in fi at or before Stage 5:

contradiction. Hence r = nk — 2. But this is possible only if nk — 1 has

previously been placed in fi owing to discovery of pkink) =nk—l: con-

tradiction. Lemma C follows, and with it the theorem.

3. Remarks, (a) By careful consideration of the proof of Proposi-

tion 5 in [l] as it applies to the sets constructed in Theorem T5 of

[2], one sees how to show, without a "priority" construction as in

§2, that retraceability is not always preserved by recursive permuta-

tions. The retraceable and regressive sets thus considered do not have

recursively enumerable complements (by T4 of [2] and Proposition

10 of [l]); it does follow, however, that there are 2Ko nonhyperim-

mune retraceable sets whose retraceability is not preserved by all

recursive permutations.

(b) A slight modification in the proof of the theorem leads to the

result that primitive recursive permutations need not always pre-

serve retraceability of complements of r.e. sets.

(c) We do not know yet exactly which r.e. degrees contain r.e.

sets with regressive, nonretraceable complements; but we can show

that any r.e. degree a for which a' = 0" does contain such a set.
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