RETRACEABLE SETS AND RECURSIVE PERMUTATIONS

T. G. MCLAUGHLIN

1. By a recursion property of sets of natural numbers, we mean a property preserved under all recursive permutations of the natural numbers; while by a weak-recursion property we mean one which is preserved under recursive equivalence (see [1]). It is known [1] that regressiveness is a recursion property and even a weak-recursion property. We shall prove here that the property of being retraceable fails, by contrast, to be a recursion property, even for sets with recursively enumerable complement. (It is known from [1] that retraceability is not a weak-recursion property.) Our basic terminology and notation are as in [1].

We shall repeat here, for the reader's convenience, the definition of retraceability and regressiveness of sets of natural numbers. An infinite set α of natural numbers is regressive \Leftrightarrow there is a nonrepetitive ordering a_0, a_1, a_2, \cdots of the elements of α , and a partial recursive function p whose domain includes α , such that $p(a_0) = a_0$ and $(\forall n)$ $(p(a_{n+1}) = a_n)$. α is called retraceable provided it is regressive with respect to the ordering of its elements in increasing order of magnitude.

2. It is known [1, Proposition 10] that any recursively enumerable set with regressive complement is isomorphic to a recursively enumerable set whose complement is retraceable ("isomorphic to" meaning, of course, the image of—under a recursive permutation); hence, to establish the result claimed in §1, it suffices to exhibit a recursively enumerable set whose complement is regressive but not retraceable. This we shall now do.

THEOREM. There exists a recursively enumerable set β such that β' , while regressive, is nonretraceable.

PROOF. Let $\{p_n(x)\}$ be the usual effective enumeration of the partial recursive functions of one variable, and let " P_n " denote the cumulative outcome of performing the first n steps in some fixed effective procedure P for generating precisely all correct equations $p_q(k) = r$. With each function p_n we associate a marker n. The set n0, together with a recursive regressing function n1 for n2, is constructed by stages as follows.

At Stage 0. Place (2, 1), (1, 3), (3, 0), and (0, 0) in f, attach Λ_0 to 3, and proceed to Stage 1.

Received by the editors September 10, 1965.

STAGE s, s>0. Let Λ_t be the marker of largest index which is attached to a number at the end of Stage s-1; we assume, as an inductive hypothesis (it will be easily seen, when the description of Stage s is complete, that the assumption persists from stage s to Stage s+1), that Λ_0 is one of the attached markers and that, indeed, all of Λ_0 , Λ_1 , \cdots , Λ_t are attached at the end of Stage s-1. Now examine P_s . If P_s discloses that $p_0(3) = 2$ and if 2 has not previously been placed in β , then (a) place 2 in β , (b) erase all markers Λ_i for $t \ge j > 0$, (c) place in β all numbers m, m-1, m-2 such that m was the position of a marker erased in (b), (d) attach Λ_1 to n+2, where n is the smallest number not previously placed in the domain of f, (e) place (n+2, 1), (n+1, n), and (n, n+2) in f, and, finally, (f) proceed to Stage s+1. Otherwise: if $t \ge 1$, check to see if P_s discloses that $p_1(k) = k-1$ where k is the number to which Λ_1 is attached and k-1has not previously been placed in β . If so, then (a) place k-1 in β , (b) erase all markers Λ_i for $t \ge j > 1$, (c) place in β all numbers q, q-1, q-2 such that q was the position of a marker erased in (b), (d) attach Λ_2 to m+2, where m is the smallest number not previously placed in the domain of f, (e) place (m+2, k-2), (m+1, m), (m, m+2)in f, and, finally (f) proceed to Stage s+1. But otherwise, iterate the foregoing procedure until either (i) some alteration of marker positions and membership in β has been made and we have been ordered to go to Stage s+1, or (ii) all the positions of $\Lambda_0, \dots, \Lambda_t$ at the end of stage s-1 have been scrutinized, with no such alterations having been authorized. In case (ii), let u be the least number not yet assigned to the domain of f; attach Λ_{t+1} to u+2, and place in f the pairs (u+1, u), (u, u+2), and $(u+2, l^*)$, where l^* is either one or two less than the position h of Λ_t according as the number one less than h has not or has been placed in β ; then go to Stage s+1.

This completes the description of the construction; clearly β (= the set of all *n placed in* β at some stage $s \ge 0$) is recursively enumerable.

REMARK. At the end of Stage s, exactly the numbers 0, 1, 2, \cdots , 3(s+1) have been assigned to the domain of f.

Proof. Trivial, by induction on s. The proof of the theorem is completed by a sequence of three straightforward lemmas.

LEMMA A. Every marker Λ_j , $j \ge 0$, eventually becomes permanently attached to some one number n_j , and n_j is of the form 3k, k > 0.

PROOF. This is obtained by a routine induction on j. (In particular, we must have $n_0 = 3$.)

LEMMA B. β' is regressed by f.

PROOF. We first note that (as is clear from the construction and Lemma A), β' consists of the numbers 0, n_j (see Lemma A), n_j-2 , and, provided $p_j(n_j) \neq n_j-1$, also n_j-1 . From the description of Stage 0 we see that f(0)=0, $f(n_0)=f(3)=0$, $f(n_0-2)=f(1)=3$, and $f(n_0-1)=f(2)=1$. From the description of Stage s, we further have, for each j>0, that $f(n_j-2)=n_j$, $f(n_j-1)=n_j-2$, and $f(n_j)=n_{j-1}-2$ or $n_{j-1}-1$ according as $n_{j-1}-1$ is or is not in β . Thus, f does indeed regress β' .

LEMMA C. β' is not retraceable.

PROOF. Suppose that p_k retraces β' . Let s be a stage such that all Λ_t , $t \leq k$, are in their final positions prior to s, all numbers \leq the position n_k of Λ_k which are destined for membership in β have already gone into β , and P_s discloses that $p_k(n_k) = r$ the next smaller member of β' . If $r = n_k - 1$, then $n_k - 1$ must be placed in β at or before Stage s: contradiction. Hence $r = n_k - 2$. But this is possible only if $n_k - 1$ has previously been placed in β owing to discovery of $p_k(n_k) = n_k - 1$: contradiction. Lemma C follows, and with it the theorem.

- 3. Remarks. (a) By careful consideration of the proof of Proposition 5 in [1] as it applies to the sets constructed in Theorem T5 of [2], one sees how to show, without a "priority" construction as in §2, that retraceability is not always preserved by recursive permutations. The retraceable and regressive sets thus considered do not have recursively enumerable complements (by T4 of [2] and Proposition 10 of [1]); it does follow, however, that there are 2^{\aleph_0} nonhyperimmune retraceable sets whose retraceability is not preserved by all recursive permutations.
- (b) A slight modification in the proof of the theorem leads to the result that *primitive* recursive permutations need not always preserve retraceability of complements of r.e. sets.
- (c) We do not know yet exactly which r.e. degrees contain r.e. sets with regressive, nonretraceable complements; but we can show that any r.e. degree a for which a' = 0'' does contain such a set.

REFERENCES

- 1. J. C. E. Dekker, *Infinite series of isols*, Proc. Sympos. Pure Math., Vol. 5, pp. 77-96, Amer. Math. Soc., Providence, R. I., 1962.
- 2. J. C. E. Dekker and J. R. Myhill, Retraceable sets, Canad. J. Math. 10 (1958), 357-373.

University of Illinois