RETRACEABLE SETS AND RECURSIVE PERMUTATIONS
T. G. MCLAUGHLIN

1. By a recursion property of sets of natural numbers, we mean a
property preserved under all recursive permutations of the natural
numbers; while by a weak-recursion property we mean one which is
preserved under recursive equivalence (see [1]). It is known [1] that
regressiveness is a recursion property and even a weak-recursion prop-
erty. We shall prove here that the property of being retraceable fails,
by contrast, to be a recursion property, even for sets with recursively
enumerable complement. (It is known from [1] that retraceability
is not a weak-recursion property.) Our basic terminology and nota-
tion are as in [1].

We shall repeat here, for the reader’s convenience, the definition
of retraceability and regressiveness of sets of natural numbers. An
infinite set o of natural numbers is regressive < there is a nonrepeti-
tive ordering ao, @1, a2, - -+ + of the elements of «, and a partial re-
cursive function p whose domain includes «, such that p(ao) =a, and
(¥n) (p(any1) =a,). « is called retraceable provided it is regressive
with respect to the ordering of its elements in increasing order of
magnitude.

2. Itis known [1, Proposition 10] that any recursively enumerable
set with regressive complement is isomorphic to a recursively enumer-
able set whose complement is retraceable (“isomorphic to” meaning,
of course, the image of—under a recursive permutation); hence, to
establish the result claimed in §1, it suffices to exhibit a recursively
enumerable set whose complement is regressive but not retraceable.
This we shall now do.

THEOREM. There exists a recursively enumerable set B such that 3,
while regressive, 1s nonretraceable.

ProoF. Let {p,(x)} be the usual effective enumeration of the par-
tial recursive functions of one variable, and let “P,” denote the
cumulative outcome of performing the first # steps in some fixed
effective procedure P for generating precisely all correct equations
pq(k) =r. With each function p, we associate a marker A,. The set 3,
together with a recursive regressing function f for ', is constructed
by stages as follows.

AT StaAGE 0. Place (2, 1), (1, 3), (3, 0), and (0, 0) in f, attach A, to
3, and proceed to Stage 1.
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AT STAGE s, s>0. Let A, be the marker of largest index which is
attached to a number at the end of Stage s—1; we assume, as an in-
ductive hypothesis (it will be easily seen, when the description of
Stage s is complete, that the assumption persists from stage s to
Stage s+1), that A, is one of the attached markers and that, indeed,
all of Ao, Ay, - - -+, A, are attached at the end of Stage s—1. Now
examine P,. If P, discloses that p¢(3) =2 and if 2 has not previously
been placed in 8, then (a) place 2 in 3, (b) erase all markers A; for
t=7>0, (c) place in B8 all numbers m, m—1, m—2 such that m was
the position of a marker erased in (b), (d) attach A; to n+2, where n
is the smallest number not previously placed in the domain of f,
(e) place (n+2, 1), (41, n), and (n, z+2) in f, and, finally, (f) pro-
ceed to Stage s+1. Otherwise: if t= 1, check to see if P, discloses that
p1(k) =k —1 where k is the number to which A, is attached and k—1
has not previously been placed in 3. If so, then (a) place k—1 in
B, (b) erase all markers A; for t=j>1, (c) place in 8 all numbers g,
g—1, ¢—2 such that g was the position of a marker erased in (b), (d)
attach A, to m+2, where m is the smallest number not previously
placed in the domain of f, (e) place (m—+2, k—2), (m+1, m), (m, m+2)
in f, and, finally (f) proceed to Stage s+1. But otherwise, iterate the
foregoing procedure until either (i) some alteration of marker positions
and membership in B has been made and we have been ordered to go to
Stage s+1, or (ii) all the positions of Ao, - - -, A: at the end of stage
s—1 have been scrutinized, with no such alterations having been author-
ized. In case (ii), let # be the least number not yet assigned to the do-
main of f; attach Ay to #+2, and place in f the pairs (u+1, «),
(u, u+2), and (u+2, I*), where I* is either one or two less than the
position % of A, according as the number one less than % has not or
has been placed in 3; then go to Stage s+1.

This completes the description of the construction; clearly 8
(= the set of all n placed in B at some stage s=0) is recursively
enumerable.

REMARK. At the end of Stage s, exactly the numbers 0, 1, 2, - - -,
3(s+1) have been assigned to the domain of f.

PRroor. Trivial, by induction on s. The proof of the theorem is com-
pleted by a sequence of three straightforward lemmas.

LEMMA A. Every marker A;, j =0, eventually becomes permanently
attached to some one number nj, and n; is of the form 3k, k>0.

Proor. This is obtained by a routine induction on j. (In particular,
we must have 7,=3.)

LemwmaA B. ' is regressed by f.
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Proor. We first note that (as is clear from the construction and
Lemma A), 8’ consists of the numbers 0, #; (see Lemma A), n;—2,
and, provided p;(n;) #n;—1, also n;— 1. From the description of Stage
0 we see that f(0) =0, f(no) =f(3) =0, f(no—2) =f(1) =3, and f(n,—1)
=f(2) =1. From the description of Stage s, we further have, for each
j>0, that f(n;—2)=n;, f(n;—1)=n;—2, and f(n;)=n;1—2 or
n;1—1 according as #;1—1 is or is not in 8. Thus, f does indeed
regress (3.

LeMMA C. 8 is not retraceable.

PRroOF. Suppose that p, retraces 3'. Let s be a stage such that all
A, t <k, are in their final positions prior to s, all numbers < the posi-
tion 7, of A which are destined for membership in 8 have already gone
into B, and P, discloses that pi(n:) =r =the next smaller member of
B'. If r=n,—1, then n;—1 must be placed in 3 at or before Stage s:
contradiction. Hence 7 =#,—2. But this is possible only if #;—1 has
previously been placed in 8 owing to discovery of pi(nx) =n,—1: con-
tradiction. Lemma C follows, and with it the theorem.

3. REMARKS. (a) By careful consideration of the proof of Proposi-
tion 5 in [1] as it applies to the sets constructed in Theorem T5 of
[2], one sees how to show, without a “priority” construction as in
§2, that retraceability is not always preserved by recursive permuta-
tions. The retraceable and regressive sets thus considered do not have
recursively enumerable complements (by T4 of [2] and Proposition
10 of [1]); it does follow, however, that there are 2%¢ nonhyperim-
mune retraceable sets whose retraceability is not preserved by all
recursive permutations.

(b) A slight modification in the proof of the theorem leads to the
result that primaitive recursive permutations need not always pre-
serve retraceability of complements of r.e. sets.

(c) We do not know yet exactly which r.e. degrees contain r.e.
sets with regressive, nonretraceable complements; but we can show
that any r.e. degree a for which a’ =0"" does contain such a set.
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