ON THE SERIES OF PRIME RECIPROCALS

JAMES A. CLARKSON

Let p_n be the nth prime. We give another proof of the

THEOREM. The series $\sum_{n=1}^{\infty} (1/p_n)$ diverges.

PROOF. Assume the contrary, and fix k so that

(1)
$$\sum_{n=k+1}^{\infty} (1/p_n) < 1/2.$$

Let $Q = p_1 p_2 \cdot \cdot \cdot p_k$.

We consider now the sum $S(r) = \sum_{i=1}^{r} [1/(1+iQ)]$, where r is any positive integer. Since 1+iQ is prime to Q, all the prime factors of all these denominators are from a finite segment of primes which we call P(r):

$$P(r) = \{ p_{k+1}, p_{k+2}, \cdots, p_{m(r)} \}.$$

Now let S(r, j) stand for the sum of those terms in the sum S(r) whose denominators 1+iQ have just j (not assumed distinct) prime factors. Each such term has the form $1/q_1q_2\cdots q_j$, with each $q_i\in P(r)$. But every such term occurs at least once in the expansion of $\left[\sum_{n=k+1}^{m(r)} (1/p_n)\right]^j$, so by (1) $S(r, j) < 1/2^j$. Thus for each r,

$$S(r) = \sum_{j} S(r, j) < \sum_{j} (1/2^{j}) < 1.$$

So $\sum_{i=1}^{\infty} [1/(1+iQ)]$ converges, which in turn implies that the harmonic series does.

TUFTS UNIVERSITY

Received by the editors November 13, 1965.