ON THE DIOPHANTINE EQUATION $x^{3}+y^{3}+z^{3}=x+y+z$

A. OPPENHEIM

1. The remarks in this note on the Diophantine equation

$$
\begin{equation*}
x^{3}+y^{3}+z^{3}=x+y+z \tag{1}
\end{equation*}
$$

are prompted by Edgar's recent note [1]. In order "to avoid certain trivial solutions" he assumes that $x \geqq y \geqq 0, z<0$ and $x \neq-y$. Using a method of S. D. Chowla and others (a reference not accessible to me) he obtains infinitely many solutions of (1) subject to the further conditions

$$
\begin{equation*}
x+y+z=m, \quad x+y=k m, \quad x+z \neq 0 \tag{2}
\end{equation*}
$$

in each of the following cases (i) $k=3$ (Chowla), (ii) $k=12$ (Edgar), (iii) $k=16 / 3$ (Edgar).

In this note I show that each of the trivial solutions $(h, 1,-h)$ where $|h| \geqq 2$, gives rise to infinitely many nontrivial solutions and that nontrivial solutions likewise generate others.

As an example the equation

$$
\begin{equation*}
N^{2}-85 M^{2}=-4 \tag{3}
\end{equation*}
$$

has infinitely many integral solutions (N, M), both odd or both even. The integers

$$
\begin{equation*}
x=\frac{1}{2}(M+N), \quad y=\frac{1}{2}(M-N), \quad z=-4 M \tag{4}
\end{equation*}
$$

will always satisfy (1). And for those solutions

$$
x+y+z=-3 M, \quad x+y=M
$$

These solutions were obtained in fact by the method below from the nontrivial solution ($5,-4,-4$).

The equation

$$
\begin{equation*}
3 N^{2}-31 M^{2}=-4 \tag{5}
\end{equation*}
$$

also has infinitely many solutions with M, N of like parity: the equations

$$
x+y=-M, \quad x-y=N, \quad z=2 M
$$

will yield solutions of (1). Equation (5) was derived from the trivial solution ($-2,1,2$) of (1).

The equation
Received by the editors May 19, 1965.

$$
\begin{equation*}
5 N^{2}-62 M^{2}=2 \tag{6}
\end{equation*}
$$

has infinitely many solutions in integers N (even) and M : the smallest solution appears to be $(412,117)$. Determine x, y, z by the equations

$$
x+y=10 M, \quad x-y=N, \quad z=-7 M:
$$

then x, y, z are integers which satisfy (1). One solution is therefore $x=791, y=379, z=-819$.
2. Suppose that (x, y, z) is a solution of (1). Any permutation yields another solution (not necessarily distinct). Also ($-x,-y,-z$) is a solution. In general 12 solutions arise from a given solution.

Suppose that $x+y$ and z are not both zero. Define integers m, n, a, c uniquely by the following equations
(7) $x+y=a m, \quad z=-c m, \quad x-y=n, \quad(a, c)=1, \quad m \geqq 1$.

Then from the identity

$$
4\left(x^{3}+y^{3}+z^{3}-x-y-z\right)=m\left\{3 a n^{2}+\left(a^{3}-4 c^{3}\right) m^{2}-4(a-c)\right\}
$$

we see that the integers $(m, n)(m \geqq 1)$ satisfy the Diophantine equation

$$
\begin{equation*}
\left(a^{3}-4 c^{3}\right) M^{2}+3 a N^{2}=4(a-c) \tag{8}
\end{equation*}
$$

Conversely, suppose that integers a and c exist such that (8) is solvable in integers $M \neq 0, N$ with $a M, N$ of like parity; then the equations

$$
X+Y=a M, \quad Z=-c M, \quad X-Y=N
$$

give integers X, Y, Z which satisfy (1).
If in addition the integer D defined by

$$
\begin{equation*}
D=3 a\left(4 c^{3}-a^{3}\right) \tag{9}
\end{equation*}
$$

is positive and not a square, then the equation (8), having one solution (M, N) with $a M, N$ of same parity, will have infinitely many such solutions, by a classical theorem on indefinite binary quadratic forms.

As an example, take the trivial solution

$$
(x, y, z)=(h, 1,-h)
$$

where h is an integer, $|h| \geqq 2$. Equation (8) becomes

$$
\begin{align*}
& 3(h+1) N^{2}-\left(3 h^{3}-3 h^{2}-3 h-1\right) M^{2}=4 \\
& \quad D=3(h+1)\left(3 h^{3}-3 h^{2}-3 h-1\right) \tag{10}
\end{align*}
$$

It is easily seen that $D>0$ and that D is not a square whenever $|h| \geqq 2$. Now (10) has the solution $M=1, N=h-1$: it has therefore infinitely many solutions such that $(h+1) M, N$ have the same parity. I omit the proof.

Here are a few examples of (10):

$$
\begin{array}{rlrl}
9 N^{2}-5 M^{2} & =4, & & 31 M^{2}-3 N^{2}=4, \\
3 N^{2}-11 M^{2} & =1, & 100 M^{2}-6 N^{2}=4, \\
15 N^{2}-131 M^{2}=4, & 229 M^{2}-9 N^{2}=4, \\
18 N^{2}-284 M^{2}=4, & 109 M^{2}-3 N^{2}=1 .
\end{array}
$$

3. Each solution (x, y, z) of (1) gives rise in general to three pairs of integers (a, c) and hence to three binary forms. Suppose (x_{1}, y_{1}, z_{1}) and (x_{2}, y_{2}, z_{2}) are two solutions of (1) derived from two pairs (N_{1}, M_{1}), (N_{2}, M_{2}), belonging to a particular binary form corresponding to a pair (a, c) : suppose also that $\left(x_{1}, y_{1}, z_{1}\right) \neq\left(x_{2}, y_{2}, z_{2}\right)$ or to $\left(-x_{2},-y_{2}\right.$, $-z_{2}$). Then the two remaining binary forms deducible from the triad $\left(x_{1}, y_{1}, z_{1}\right)$ are distinct from those deducible from the triad $\left(x_{2}, y_{2}, z_{2}\right)$. In this way further sets of solutions can be generated.

As an example the trivial solution ($2,1,-2$) leads to the form $9 N^{2}-5 M^{2}=4$. The solution $(6,8)$ of the latter equation gives the triad (15, 9, -16) which satisfies (1). This triad yields the triads $(15,-16,9),(9,-16,15)$ whence we get two sets for a, c, m, n and two forms:

$$
\begin{aligned}
& -1,-9,1,31: \quad 2915 M^{2}-3 N^{2}=32 ; \\
& -7,-15,1,25: 13157 M^{2}-21 N^{2}=32 .
\end{aligned}
$$

From these two binary forms infinitely many others can be generated, each of which will lead to solutions of (1).
4. Edgar [1] gives a solution of (1) corresponding in his notation to $k=16 / 3$; in my notation $a=16, c=13$. The corresponding equation (8) is

$$
4 N^{2}-391 M^{2}=1
$$

which has (as Edgar says) infinitely many solutions with even N, the smallest solution yielding

$$
x=8 u+v, \quad y=8 u-v, \quad z=13 u
$$

where $u=371133, v=1834670$. In the way described further forms can be generated from the permutations

$$
(8 u+v,-13 u, 8 u-v), \quad(8 u-v,-13 u, 8 u+v) .
$$

The pair $(a, c)=(10,7)$ is also worthy of note: it leads to the form (6) which gives rise to infinitely many solutions of (1).

Two more examples can be given of small a, c :

$$
a=14, \quad c=11 ; \quad a=64, \quad c=61 .
$$

The first leads to the equation

$$
7 N^{2}-430 M^{2}=2,
$$

solvable infinitely often with N even, e.g. $N=2124, M=271$ whence

$$
x=2959, \quad y=835, \quad z=-2981 .
$$

The second $(64,61)$ leads to the equation

$$
(4 N)^{2}-53815 M^{2}=1
$$

which is in fact solvably infinitely of ten with N even so that solutions of (1) are given by

$$
x+y=64 M, \quad x-y=N, \quad z=-61 M .
$$

5. A difficult problem remains for consideration. Two solutions of (1) may be regarded as dependent if they can be connected by a finite number of binary forms as described above. Can simple criteria be determined for dependence? Can the independent solutions be completely specified?

I am grateful to Professor E. S. Barnes for some helpful comments.

Reference

1. H. M. Edgar, Some remarks on the Diophantine equation $x^{3}+y^{3}+z^{3}=x+y+z$, Proc. Amer. Math. Soc. 16 (1965), 148-153.

University of Malaya, Kuala Lumpur, Malaysia

