ON PRIMES OF THE FORM $u^2 + 5v^2$

B. W. BREWER

1. Introduction. A prime p of the form 20k+1 or 20k+9 admits of the two integral representations $u^2 + 5v^2$ and $a^2 + b^2$ (a odd), each representation being essentially unique. Moreover, the only primes other than 5 admitting of the first representation are those of the indicated form. If p is a prime of the form 20k+1 or 20k+9 and $a \not\equiv 0 \pmod{5}$, the author [1] has expressed u in terms of the sum $\Lambda_5 = \sum_{x=0}^{p-1} \chi(x(x^4-5x^2+5))$, where $\chi(m)$ is the quadratic character of m modulo p and $x(x^4-5x^2+5)$ is the fifth term of the sequence $V_1(x) = x$, $V_2(x) = x^2 - 2$, $V_{n+2}(x) = x V_{n+1}(x) - V_n(x)$ $(n = 1, 2, \cdots)$ (see also A. L. Whiteman, [3], [4]). However, if $a \equiv 0 \pmod{5}$, $\Lambda_{\delta} = 0$. In this paper, we consider the sequence $V_1(x, Q) = x$, $V_2(x, Q) = x^2$ -2Q, $V_{n+2}(x, Q) = x V_{n+1}(x, Q) - Q V_n(x, Q)$ $(n = 1, 2, \cdots)$, Q an integer, and study the sum $\Lambda_{\delta}(Q) = \sum_{x=0}^{p-1} \chi(V_{\delta}(x, Q))$. If p is a prime having one of the above forms, we show in general that $\Lambda_5(Q) = \pm 4u$ when $\chi(Q) = 1$ and $a \not\equiv 0 \pmod{5}$ or when $\chi(Q) = -1$ and $a \equiv 0 \pmod{5}$. Specifically, Theorem 2 is concerned with the first case and Theorem 3 with the second case. Theorem 2 reduces to Theorem 4 of [1] when Q=1, and refinements of Theorem 3 for certain classes of primes and specific values of O appear as Corollary 1 and Corollary 2.

Thanks are due the referee for suggesting certain improvements in Theorem 3.

2. Four lemmas. Let $GF(p^m)$ denote the finite field of p^m elements (p a prime). We state Lemma 1 of [1] for completeness.

LEMMA 1. If p is an odd prime, λ a nonzero element of $GF(p^m)$, and λ is of multiplicative period e, then for s a positive integer

$$\sum_{k=0}^{e-1} \lambda^{ke} = \begin{cases} e & \text{if } s \equiv 0 \pmod{e}, \\ 0 & \text{if } s \not\equiv 0 \pmod{e}. \end{cases}$$

The following lemma is a generalization of Lemma 2 of [1].

LEMMA 2. Let p be an odd prime and λ a generating element of the multiplicative group of $GF(p^2)$. Let $V_1(x, Q) = x$, $V_2(x, Q) = x^2 - 2Q$, $V_{n+2}(x, Q) = xV_{n+1}(x, Q) - QV_n(x, Q)$ $(n = 1, 2, \cdots)$, where Q is an integer, $\chi(Q) = -1$, and $Q = \lambda^{r(p+1)}$ $(0 < r \le p-1)$. Let

Presented to the Society, January 26, 1965; received by the editors May 15, 1965 and, in revised form, August 16, 1965.

$$\Lambda_n(Q) = \sum_{x=0}^{p-1} \chi(V_n(x, Q)), \qquad \Omega_n(Q) = \sum_{s=0}^{p-2} \chi(\lambda^{ns(p+1)} + Q^n \lambda^{-ns(p+1)})$$

and

$$\Theta_n(Q) = \sum_{t=0}^p \chi(\lambda^{n(t(p-1)+r)} + Q^n \lambda^{-n(t(p-1)+r)}).$$

Then
$$2\Lambda_n(Q) = \Omega_n(Q) + \Theta_n(Q)$$
 $(n = 1, 2, \cdots)$.

We note that the conclusion of Lemma 2 also follows if $\chi(Q) = 1$, but we do not have need for this case.

PROOF OF LEMMA 2. Consider the quadratics $y^2 - Py + Q$ obtained by letting P run over the set $0, 1, \dots, p-1$, and let $\Delta = P^2 - 4Q$. Since $\chi(Q) = -1$ and $\sum_{P=0}^{p-1} \chi(\Delta) = -1$, we obtain (p-1)/2 quadratics with $\chi(\Delta) = 1$ and (p+1)/2 quadratics with $\chi(\Delta) = -1$. If $\chi(\Delta) = 1$, the roots of $y^2 - Py + Q = 0$ in $GF(p^2)$ are of the form $\lambda^{s(p+1)}$ $\lambda^{(r-s)(p+1)}$ for some s, $0 \le s \le p-2$. If $\chi(\Delta) = -1$, the roots of $y^2 - Py + Q = 0$ in $GF(p^2)$ are of the form $\lambda^{t(p-1)+r}$, $\lambda^{(r-t)(p-1)+r}$ for some t, $0 \le t \le p$. Conversely, $\lambda^{s(p+1)}$, $\lambda^{(r-s)(p+1)}$ are roots of $y^2 - Py + Q = 0$ for some integer P such that $\chi(\Delta) = 1$, and $\lambda^{t(p-1)+r}$, $\lambda^{(r-t)(p-1)+s}$ are roots of $y^2 - Py + Q = 0$ for some integer P such that $\chi(\Delta) = -1$.

Let H denote the set of pairs $\alpha_s = \lambda^{s(p+1)}$, $\alpha_s' = \lambda^{(r-s)(p+1)}$ ($s = 0, 1, \dots, p-2$) and K denote the set of pairs $\beta_i = \lambda^{t(p-1)+r}$, and $\beta_i' = \lambda^{(r-t)(p-1)+r}$ ($t = 0, 1, \dots, p$). Now $\alpha_i = \alpha_j$ if and only if i = j, and $\alpha_i = \alpha_j'$ if and only if $i + j \equiv r \pmod{p-1}$. Likewise, $\beta_i = \beta_j$ if and only if i = j, and since r is odd, $\beta_i = \beta_j'$ if and only if $i + j \equiv r \pmod{p+1}$. Hence there are (p-1)/2 distinct pairs in the set H, each pair occurring twice, and (p+1)/2 distinct pairs in the set K, each pair occurring twice. Since $\Omega_n(Q) = \sum_{s=0}^{p-2} \chi(\alpha_s^n + \alpha_s'^n)$ and $\Theta_n(Q) = \sum_{t=0}^{p} \chi(\beta_t^n + \beta_t'^n)$, the lemma follows.

Applying Euler's criterion to $\Omega_n(Q)$ and $\Theta_n(Q)$ in Lemma 2, we obtain

LEMMA 3. Let λ , $\Omega_n(Q)$ and $\Theta_n(Q)$ be defined as in Lemma 2. Then

$$\Omega_n(Q) = \sum_{h=0}^{(p-1)/2} \sum_{s=0}^{p-2} {\binom{(p-1)/2}{h}} Q^{nh} \lambda^{ns(p+1)(p-4h-1)/2}$$

and

$$\Theta_n(Q) = \sum_{h=0}^{(p-1)/2} \sum_{t=0}^{p} {\binom{(p-1)/2}{h}} Q^{nh} \lambda^{n(t(p-1)+r)(p-4h-1)/2}$$

in $GF(p^2)$.

Whiteman has given a proof of the following lemma. Part (1) is proved in [3] and part (2) in [4].

LEMMA 4. (1) If p is prime and $p = 20k + 1 = u^2 + 5v^2 = a^2 + b^2$ (a odd), then

$$\binom{10k}{k} \binom{10k}{3k} \equiv 4u^2 \pmod{p}$$

and

$$\binom{10k}{k} \equiv -\binom{10k}{3k} \quad or \quad \binom{10k}{k} \equiv \binom{10k}{3k} \pmod{p}$$

according as $a \equiv 0 \pmod{5}$ or $a \not\equiv 0 \pmod{5}$.

(2) If p is prime and $p = 20k + 9 = u^2 + 5v^2 = a^2 + b^2$ (a odd), then

$$\binom{10k+4}{k}\binom{10k+4}{3k+1} \equiv 4u^2 \pmod{p}$$

and

$$\binom{10k+4}{k} \equiv -\binom{10k+4}{3k+1} \text{ or } \binom{10k+4}{k} \equiv \binom{10k+4}{3k+1} \pmod{p}$$

according as $a \equiv 0 \pmod{5}$ or $a \not\equiv 0 \pmod{5}$.

3. $\Lambda_5(Q)$. We first prove

THEOREM 1. Let p be an odd prime, $\Lambda_n(Q)$ be defined as in Lemma 2, and $\chi(Q) = \pm 1$. If $\chi(Q') = \chi(Q)$ and $Q' \equiv m^2 Q \pmod{p}$, then $\Lambda_n(Q') = \chi(m)^n \Lambda_n(Q) \ (n = 1, 2, \cdots)$.

PROOF. Clearly, Theorem 1 will follow if we show that

$$(1) V_n(mx, Q') \equiv m^n V_n(x, Q) \pmod{p}$$

for $n=1, 2, \cdots$. We use induction. Now (1) is certainly true for n=1 and n=2. Assume (1) to be true for all k < n. Then

$$V_{n}(mx, Q') \equiv mxV_{n-1}(mx, Q') - Q'V_{n-2}(mx, Q')$$

$$\equiv mxm^{n-1}V_{n-1}(x, Q) - m^{2}Qm^{n-2}V_{n-2}(x, Q)$$

$$\equiv m^{n}[xV_{n-1}(x, Q) - QV_{n-2}(x, Q)] \equiv m^{n}V_{n}(x, Q) \pmod{p},$$

and Theorem 1 is proved.

Noting that $\Lambda_{\delta}(Q) = \sum_{x=0}^{p-1} \chi(x(x^4-5Qx^2+5Q^2))$, Theorem 1 and Theorem 4 of [1] imply

THEOREM 2. Let p be an odd prime $(p \neq 5)$, $\chi(Q) = 1$, and $Q \equiv m^2 \pmod{p}$. If $p \neq u^2 + 5v^2$, then p = 20k + r (r = 3, 7, 11, 13, 17, or 19) and

$$\sum_{x=0}^{p-1} \chi(x(x^4-5Q^2+5Q^2))=0.$$

If $p = u^2 + 5v^2$, then either $p = 20k + 1 = a^2 + b^2$ ($a \equiv 1 \pmod{4}$), and

$$\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2))$$

$$= \begin{cases} 0 & \text{if } a \equiv 0 \pmod{5}, \\ -4u\chi(m) & \text{(} u \equiv a \pmod{5}) \text{)} & \text{if } a \not\equiv 0 \pmod{5}, \end{cases}$$

or $p = 20k + 9 = a^2 + b^2$ $(a \equiv 1 \pmod{4})$, and

$$\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2))$$

$$= \begin{cases} 0 & \text{if } a \equiv 0 \pmod{5}, \\ 4u\chi(m) & (u \equiv a \pmod{5}) & \text{if } a \not\equiv 0 \pmod{5}. \end{cases}$$

To obtain a representation of u in terms of a character sum under the hypothesis that $a \equiv 0 \pmod{5}$, we consider $\Lambda_{\delta}(Q)$ where $\chi(Q) = -1$. We prove

THEOREM 3. Let p be an odd prime $(p \neq 5)$ and $\chi(Q) = -1$. If $p \neq u^2 + 5v^2$, then p = 20k + r (r = 3, 7, 11, 13, 17, or 19), and

$$\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2)) = 0.$$

If $p = u^2 + 5v^2$, then either $p = 20k + 1 = a^2 + b^2$ ($a \equiv 1 \pmod{4}$), $b \equiv aQ^{(p-1)/4} \pmod{p}$), and

$$\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2)) = \begin{cases} 0 & \text{if } a \neq 0 \pmod{5}, \\ -4u & (u \equiv b \pmod{5}) & \text{if } a \equiv 0 \pmod{5}, \end{cases}$$

or
$$p = 20k + 9 = a^2 + b^2$$
 $(a \equiv 1 \pmod{4}, b \equiv aQ^{(p-1)/4} \pmod{p})$, and

$$\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2)) = \begin{cases} 0 & \text{if } a \neq 0 \pmod{5}, \\ 4u & (u \equiv b \pmod{5}) & \text{if } a \equiv 0 \pmod{5}. \end{cases}$$

PROOF. That $p=u^2+5v^2$ if and only if p=20k+1 or p=20k+9 is well known. We are concerned, therefore, with the evaluation of the sum $\Lambda_5(Q)$. If p=20k+r (r=3,7,11, or 19), $\Lambda_5(Q)=0$ since $V_5(-x,Q)=-V_5(x,Q)$ and $\chi(-1)=-1$. If p=20k+r (r=13 or 17), we apply Lemma 3 and then Lemma 1 to $\Omega_5(Q)$ and $\Theta_5(Q)$. We obtain

$$\Omega_{\delta}(Q) \equiv (p-1) \binom{(p-1)/2}{(p-1)/4} Q^{5(p-1)/4} \pmod{p}$$

and

$$\Theta_{\delta}(Q) \equiv (p+1) \binom{(p-1)/2}{(p-1)/4} Q^{\delta(p-1)/4} \pmod{p}.$$

Hence from Lemma 2, we have $\Lambda_{\delta}(Q) \equiv 0 \pmod{p}$. Since $\Lambda_{\delta}(Q)$ is even and numerically less than p, this in turn implies that $\Lambda_{\delta}(Q) = 0$.

To obtain the value of $\Lambda_5(Q)$ when $p = u^2 + 5v^2$, we again apply Lemma 1 and Lemma 3 to $\Omega_5(Q)$ and $\Theta_5(Q)$. If p = 20k + 1, we obtain

(2)
$$\Omega_{5}(Q) \equiv 2(p-1) \left[\binom{10k}{k} Q^{5k} + \binom{10k}{3k} Q^{15k} \right] + (p-1) \binom{10k}{5k} Q^{25k} \pmod{p}$$

and

(3)
$$\Theta_{\delta}(Q) \equiv (p+1) \binom{10k}{5k} Q^{25k} \pmod{p}.$$

If p = 20k + 9, we obtain

(4)
$$\Omega_{\delta}(Q) \equiv (p-1) \binom{10k+4}{5k+2} Q^{\delta(5k+2)} \pmod{p}$$

and

$$\Theta_{\delta}(Q) \equiv (p+1) \binom{10k+4}{k} \left[Q^{5k+2} + Q^{9(5k+2)} \right]$$

$$+ (p+1) \binom{10k+4}{3k+1} \left[Q^{3(5k+2)} + Q^{7(5k+2)} \right]$$

$$+ (p+1) \binom{10k+4}{5k+2} Q^{5(5k+2)} \pmod{p}.$$

Since $\chi(Q) = -1$, $Q^{(p-1)/4} \equiv i \pmod{p}$, where $i^2 \equiv -1 \pmod{p}$. Moreover,

$$\binom{(p-1)/2}{(p-1)/4} \equiv 2a \pmod{p},$$

where $a \equiv 1 \pmod{4}$ (Gauss). Hence if p = 20k + 1, (2) and (3) give

(6)
$$\Omega_{5}(Q) \equiv -2 \left[\binom{10k}{k} - \binom{10k}{3k} \right] i - 2ai \pmod{p}$$

and

(7)
$$\Theta_{5}(Q) \equiv 2ai \pmod{p};$$

and if p = 20k + 9, (4) and (5) give

(8)
$$\Omega_5(Q) \equiv -2ai \pmod{p}$$

and

$$\Theta_{\delta}(Q) \equiv 2 \left[\binom{10k+4}{k} - \binom{10k+4}{3k+1} \right] i + 2ai \pmod{p}.$$

With a suitable choice of the sign of u when $a \equiv 0 \pmod{5}$, Lemma 4 implies that

$$\binom{10k}{k} - \binom{10k}{3k} \equiv \begin{cases} 0 \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\ -4ui \pmod{p} & \text{if } a \equiv 0 \pmod{5}, \end{cases}$$

when p = 20k + 1, and

$$\binom{10k+4}{k} - \binom{10k+4}{3k+1} \equiv \begin{cases} 0 \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\ -4ui \pmod{p} & \text{if } a \equiv 0 \pmod{5}, \end{cases}$$

when p = 20k + 9. Thus if p = 20k + 1,

$$\Omega_{\delta}(Q) \equiv \begin{cases} -2ai \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\ -8u - 2ai \pmod{p} & \text{if } a \equiv 0 \pmod{5}, \end{cases}$$

and $\Theta_{\mathfrak{s}}(Q) \equiv 2ai \pmod{p}$; and if p = 20k + 9, $\Theta_{\mathfrak{s}}(Q) \equiv -2ai \pmod{p}$ and

$$\Theta_{5}(Q) \equiv \begin{cases} 2ai \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\ 8u + 2ai \pmod{p} & \text{if } a \equiv 0 \pmod{5}. \end{cases}$$

Hence from Lemma 2, we have

(9)
$$\Lambda_{5}(Q) \equiv \begin{cases} 0 \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\ -4u \pmod{p} & \text{if } a \equiv 0 \pmod{5} \end{cases}$$

when p = 20k + 1, and

(10)
$$\Lambda_{\delta}(Q) \equiv \begin{cases} 0 \pmod{p} & \text{if } a \not\equiv 0 \pmod{5}, \\ 4u \pmod{p} & \text{if } a \equiv 0 \pmod{5}, \end{cases}$$

when p = 20k + 9.

Since $p \ge 29$ and $|u| < p^{1/2}$, it follows that |4u| < p. Then as before, $\Lambda_5(Q)$ being even and numerically less than p, (9) and (10) imply that

$$\Lambda_{\delta}(Q) = \begin{cases} 0 & \text{if } a \not\equiv 0 \pmod{5}, \\ -4u & \text{if } a \equiv 0 \pmod{5}, \end{cases}$$

when p = 20k + 1, and

$$\Lambda_{5}(Q) = \begin{cases} 0 & \text{if } a \not\equiv 0 \pmod{5}, \\ 4u & \text{if } a \equiv 0 \pmod{5}, \end{cases}$$

when p = 20k + 9.

Now suppose that $a\equiv 0\pmod{5}$. Since $p=a^2+b^2$ ($a\equiv 1\pmod{4}$), the sign of b can be chosen such that $b\equiv ai\pmod{p}$. Since $\Omega_5(Q)=\sum_{x=1}^{p-1}\chi(x^5+Q^5x^{-5})=\sum_{x=0}^{p-1}\chi(x(x^{10}+Q^5))$, $\Omega_5(Q)$ is even. From Lemma 2, we have $2\Lambda_n(Q)=\Omega_5(Q)+\Theta_5(Q)$, and hence $\Theta_5(Q)$ is even. Moreover, since $p\geq 29$ and $|b|< p^{1/2}$, it follows that |2b|< p-1, and then (7) and (8) imply that $\Theta_5(Q)=2b$ when p=20k+1 and $\Omega_5(Q)=-2b$ when p=20k+9. Then from Lemma 2, we have $-8u=2b+\Omega_5(Q)$ if p=20k+1, and $8u=-2b+\Theta_5(Q)$ if p=20k+9. Now it is easily seen that $\Omega_5(Q)\equiv 0\pmod{5}$ if p=20k+1, and $\Theta_5(Q)\equiv 0\pmod{5}$ if p=20k+9. Hence $u\equiv b\pmod{5}$ when p=20k+1 or p=20k+9 and Theorem 3 is proved.

If p is prime and $p=8k+5=a^2+b^2$ ($a\equiv 1\pmod 4$), $b/2\equiv 1\pmod 4$), E. Lehmer [2] has shown that $2^{(p-1)/4}\equiv b/a\pmod p$. If p is prime and $p=12k+5=a^2+b^2$ ($a\equiv 1\pmod 4$), $b\equiv a\pmod 3$), the author [1] has shown that the Jacobsthal sum $\Phi_2(-3)=2b$, and hence $(-3)^{(p-1)/4}\equiv \Phi_2(-3)/\Phi_2(1)\equiv -b/a\pmod p$. Using these results and Theorem 1, we obtain the following two corollaries to Theorem 3.

COROLLARY 1. Let p be a prime of the form 40k+21 or 40k+29, $\chi(Q) = -1$, and $Q \equiv 2m^2 \pmod{p}$. If p = 40k+21, then $p = u^2 + 5v^2 = a^2 + b^2$ (b even, $b/2 \equiv 1 \pmod{4}$), and

$$\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2))$$

$$= \begin{cases} 0 & \text{if } a \neq 0 \pmod{5}, \\ -4u\chi(m) & (u \equiv b \pmod{5}) & \text{if } a \equiv 0 \pmod{5}. \end{cases}$$

If p = 40k + 29, then $p = u^2 + 5v^2 = a^2 + b^2$ (b even, $b/2 \equiv 1 \pmod{4}$), and

$$\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2))$$

$$= \begin{cases} 0 & \text{if } a \neq 0 \pmod{5}, \\ 4u\chi(m) & (u \equiv b \pmod{5}) \end{cases} \quad \text{if } a \equiv 0 \pmod{5}.$$

COROLLARY 2. Let p be a prime of the form 60k+41, or 60k+29, $\chi(Q) = -1$, and $Q \equiv -3m^2 \pmod{p}$. If p = 60k+41, then $p = u^2 + 5v^2 = a^2 + b^2$ (a $\equiv 1 \pmod{4}$, $b \equiv a \pmod{3}$), and

$$\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2))$$

$$=\begin{cases} 0 & \text{if } a \not\equiv 0 \pmod{5}, \\ 4u\chi(m) & (u \equiv b \pmod{5}), & \text{if } a \equiv 0 \pmod{5}. \end{cases}$$

If p = 60k + 29, then $p = u^2 + 5v^2 = a^2 + b^2$ ($a \equiv 1 \pmod{4}$, $b \equiv a \pmod{3}$), and

$$\sum_{x=0}^{p-1} \chi(x(x^4 - 5Qx^2 + 5Q^2))$$

$$= \begin{cases} 0 & \text{if } a \neq 0 \pmod{5}, \\ -4u\chi(m) & (u \equiv b \pmod{5}) & \text{if } a \equiv 0 \pmod{5}. \end{cases}$$

REFERENCES

- 1. B. W. Brewer, On certain character sums, Trans. Amer. Math. Soc. 99 (1961), 241-245.
 - 2. E. Lehmer, On Euler's criterion, J. Austral. Math. Soc. 1 (1959), 64-70.
- 3. A. L. Whiteman, Theorems on Brewer and Jacobsthal sums. I, Theory of numbers, pp. 44-55, Proc. Sympos. Pure Math. Vol. 8, Amer. Math. Soc., Providence, R. I., 1965.
- 4. ——, Theorems on Brewer and Jacobsthal sums. II, Michigan Math. J. 12 (1965), 65-80.

TEXAS A & M UNIVERSITY