A NEW PROOF OF A THEOREM OF KUMMER
WILLIAM J. LEAHEY

Let p be an odd prime and denote by K the field obtained by
adjoining the pth roots of unity to Q, the rational numbers. Let {
be a fixed primitive pth root of unity and set r=1—¢. The following
theorem, due to Kummer, is of importance in proving the nonsolvabil-
ity of x?4y?=2” in nonzero rational integers for regular primes p.

THEOREM. Let € be a unit in K and suppose that e=a (mod w?),
where a is a rational integer. Then if p is regular there exists e K such
that € =e.

The object of this note is to give a new proof of this theorem. The
newness lies in the proof of the following theorem, from which Kum-
mer’s theorem is easily derived. In the statement of the theorem and
throughout the cohomology groups in question are the Tate coho-
mology groups (see [3, Chapter VIII]).

THEOREM. Let E be a number field and L a cyclic extension of E of odd
prime degree. Denote by U the group of units in L and by G the Galois
group of L/E. Then H-(U, G) #0.

Proor. Let (E/Q) =r+2s where 7 is the number of real infinite
primes of E and s is the number of complex infinite primes. Thus if V
is the group of units of E, Visof rank t=r+s—1.

Let ¢ be an isomorphism of E into the complex numbers. Then ¢
can be extended in exactly p =(L/E) ways to L. If ¢(E) is real then
any extension of ¢ to L must also be real since p is odd. (If not, then
the image of L would be of degree 2 over its maximal real subfield
implying that p is even.) Thus (L/Q) =pr+2ps and L has pr real
infinite primes and ps complex infinite primes. Therefore U is of rank
u=pr+ps—1=pt+p—1.

According to [1, Theorem 10.3] the Herbrand quotient of U is

p(pt—u)/(l'—l) = — .
p2
It follows that order (H-'(U, G))=p- [order(H*(U, G))]>1. This
completes the proof of the theorem.

The derivation of Kummer's theorem from this theorem is well-
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known (e.g. see [2, Theorems 965-969]). It is given here for the sake
of completeness.

Proor or KUMMER’s THEOREM. Assume first that a=1 and that
€ is not a pth power in K. Choose 6 such that §? =€ and let L =K (6).
Then L/K is cyclic of degree p. Let ¢ be a generator of G, the Galois
group of L/K. Denote by U the group of units of L.

According to the above theorem H-1(U, G) #0 and thus there exists
n&E U such that Np,x(n) =1, but 5 is not of the form £/0(£) for any
£¢€U. By Hilbert's Theorem 90, however, 7 is of the form o/c(a)
for some integer & L. Choose such an a.

Let A= [a], the principal ideal generated by «. Since « and o ()
differ by a unit ¢(4 ) =4 for1=0,1, - - -, p—1. Hence

p—1
Az =[] oi(4z) = [8]
=0
for some BEK.

On the other hand since e=1 (mod 7?) it is easy to check that
(1—0)/7 is an integer and that the different of this element is a unit.
Hence L/K is unramified and therefore since A is invariant under
G, A1 arises from an ideal Ak of K.

Ak could not be principal. For if Ax=[y], YEK, then a=\-y
for some A& U and then n=a/d(a) =N/c(N), contradicting the choice
of 7. However, A% = [8] with BEK. Therefore A%= [8]. But p was
assumed to be regular, i.e., p does not divide the class number of K,
and therefore A is principal. This contradiction establishes the fact
that € must be a pth power in K in the case where e=1 (mod =?).

Now suppose e=a (mod 7?) where a is an arbitrary rational integer.
Then if 7 is a generator for the Galois group of K/Q, 7(e)=a=e¢
(mod 7?). Therefore

1 = Ngjp(e) = pﬁ 7i(e) = ! (mod 77).

=0
By the above €7~ ! is a pth power, say e#~1=¢. Then ¢ =(e/e1)?.
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