SMALL MODULES
W. W. LEONARD

Introduction. In [1] and [5] a left A-module E is said to be small
(or superfluous) in F if E4H=F for any submodule H of F implies
H=F. We define a left 4-module S to be small if it is a small sub-
module of some module. In what follows we investigate some proper-
ties of small modules and prove the following theorems:

THEOREM. A4 torsion module over a principal ideal domain is small
if and only if the primary components are bounded.

THEOREM. If A is a discrete valuation ring with prime p, and G an
A-module then the following conditions are equivalent:

1) G 1s small,

(2) pG s small in G,

(3) G is the direct sum of a free module of finite rank and a bounded
torsion module.

The notation used in the following will be that of [2] and [3].1

LemMaA 1. If E, F, and G are left A-modules such that EC FCG and
E is small in F then E is small in G.

Proor. Straightforward.

LeEmMMA 2. If S is a small submodule of a left A-module F and S is
contained in a direct summand E of F then S is small in E.

Proor. Straightforward.

THEOREM 1. 4 left A-module F is small if and only if F is small in
its injective envelope.

Proor. We will denote the injective envelope of a module F by
I(F).

If Fis small in I(F) then F is a small module by definition. Thus,
suppose F is a small submodule of a left 4-module H. Then FCH
CI(H), so by Lemma 1 F is small in I(H). Assume F+G=I(F) for
some submodule G of I(F). Since I(F) is injective it is a direct sum-
mand of I(H) and FCI(F). Thus, by Lemma 2 F is small in I(F).
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1 The author is indebted to Dr. E. E. Enochs for his help and suggestions. He is
also obliged to the referee for his suggestions, especially for the proof 1 implies 3 of
Theorem 5.
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THEOREM 2. Submodules, quotient modules and finite direct sums of
small modules are small.

Proor. Straightforward.

CoRroLLARY. The finite sum of small left A-modules which are sub-
modules of a given module is a small module.

If I is an infinite set it can be shown that Z» is not small in Q¥
and Z¥ is not small in Q¥ where Z is the additive group of integers,
Q the additive group of rational numbers, and N the set of positive
integers. But, Z is a small group. Moreover, Z(p*) is the sum of all
its proper subgroups, their injective envelope, and each subgroup is
small in Z(p%), but Z(p*) is not small.

We now show that a module over a principal ideal domain is small
if and only if its torsion and torsion free parts are small.

LemMA 3. If E is a left A-module and SCF are submodules of E
such that S is small in E then F/S is small in E/S if and only if F is
small in E.

ProoF. Suppose F+H=E for some submodule H of E. Then
F/S=(H+S)/S=E/S, but F/S is small in E/S, hence (H+.S)/S
=E/S. Therefore, H+S=E. But, S is small in E, hence H=E.
Thus F is small in E.

Conversely, assume F/S+H/S=E/S for some submodule H con-
taining S of E. Then (F+H)/S=E/S, hence F+H=E. But, F is
small in E, hence H=E. Thus, F/S is small in E/S.

THEOREM 3. If A 1is a left hereditary ring and the sequence of left
A-modules, 0-H—G—G/H—O0, is exact then H and G/H are small
modules if and only if G is a small module.

Proor. Since H is small in I(H), H is small in I(G). Moreover,
G/H is small in I(G)/H since I(G)/H is injective for A a hereditary
ring. Hence, by Lemma 3 G is small in I(G), therefore a small
module.

Conversely, if G is small then H is small and G/H is a small module
by Theorem 2.

CoOROLLARY. A module over a principal ideal domain is small if and
only if its torsion and torsion free parts are small.

PRroOOF. A principal ideal domain is a hereditary ring.

LeEmMA 4. If G is a small module over a principal ideal domain then
the torsion submodule, T(G), is the only basic submodule of itself.
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PRrOOF. G is small in I(G), hence T(G) is small in I(G). If Bis a
basic submodule of T(G) then T(G)/B is small in I(G)/B. But,
T(G)/B is divisible, hence T(G)/B=0 or T(G)=B.

LemMma 5 (KULiROV). 4 primary module over a principal ideal do-
main has only one basic subgroup if and only if it is either divisible
or bounded.

Proor. [3, Theorem 31.3].

THEOREM 4. A torsion module T over a principal ideal domain 1is
small if and only if the primary components of T are bounded.

ProoF. Suppose T is small. T has a unique decomposition into its
primary components and by Lemma 4 T is the only basic submodule
of itself. Since T is not divisible by Lemma 5 the primary com-
ponents are bounded.

Conversely, assume the primary components of T are bounded.
Suppose T+ H =1I(T) for some submodule H of I(T). Then T,+H,
=I(T), where T,, H,, and I(T), are the respective primary com-
ponents. There exists an integer N > 0 such that p¥7T,=0. Hence,
PV (Tp+H,) =pVH,=p¥I(1),=I1(T),. Then H=@,H,=®,I(T),
=@ ,I(T,) =I(T). Therefore, T is a small module.

LeMMA 6. If A is a left hereditary ring then a left A-module F is
small if and only if F has no nontrivial injective quotients.

ProOF. Assume F is not a small module. Then there exists a sub-
module H or I(F) such that F+H=I(F) and HI(F). Then the
sequence 0—>FNH—F—I(F)/H—0 is exact and I(F)/H is injective.

Conversely, if F/H#0 is injective for some submodule H of F then
F/H is a direct summand of I(F)/H. Thus, by Lemma 3 F is not
small in I(F).

LeMMA 7. A small torsion free module over a principal ideal domain
A has finite rank.

ProoF. Suppose G is small, 7k(G) = «, and (x;);ex is a maximal
linearly independent family of G. If K is the submodule generated
by (x:);en then K is isomorphic to A¥) which is not small. Therefore,
G is not small; contradiction.

If A is a principal ideal domain 4, will denote the localization of
A at the prime p and G, =4 ,® 4G the localization of the A-module G.

LeEMMA 8. If A is a principal ideal domain and G an A-module then
G is small if and only if G, is small for all primes p.
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ProoF. Suppose G, is small for all primes p and let J be an injec-
tive quotient of G. Then the exactness of the sequence G—J—0 im-
plies the sequence G,—J,—0 is exact for every prime p. Moreover,
Jp is injective. But, J,=0 for every prime p if and only if J=0
([2], p- 82). Hence, the conclusion follows from Lemma 6. (Note that
this proof holds for any commutative ring.)

Suppose that G is small and J=G,/H#0 is an injective quotient.
We may take J to be torsion. There is an ECG such that H=E,,
and we have J=G,/E,=(G/E),. It follows that G/E is torsion with
p-primary component J, so J is a quotient of G. Since J is automati-
cally A-injective G is not small; contradiction.

THEOREM 5. Let A be a discrete valuation ring with prime p, and let
G be an A-module. The following conditions are equivalent:

(1) G s small,

(2) G is small in G,

(3) G 1is the direct sum of a free module of finite rank and a bounded
torsion module.

Proor. If HCG then G/H is injective &p(G/H)=G/H=H+pG
=G. Thus, (1)<(2) follows from Lemma 6.

(3)=(1) follows from Theorem 2, Theorem 4, and the fact that
4 is small.

(1)=(3). By Theorem 4 the torsion part of G is bounded. Using the
corollary to Theorem 6 we reduce the problem to the torsion free
case. By Lemma 7 G then has finite rank. We want to show that G is
finitely generated, so suppose it is not. Choose F a free submodule of
G such that G/F is torsion. G/F is not finitely generated since F is
and G is not. Let A denote the completion of 4. By Theorem 20 [4]
A®G is the direct sum of a free and a divisible module. Since G/F
=4®(G/F)=(A®G)/(A®F) is not finitely generated neither is
A®G. Hence, A ®G has a nontrivial divisible part so, since AQF is
free, it follows that G/ F contains a nontrivial divisible module. This
contradicts the assumed smallness of G.

CoROLLARY. If A is a principal ideal domain and if G is an A-
module then G is small if and only if G is locally a free module of finite
rank plus a bounded torsion module.
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GEORGIA STATE COLLEGE

AN ADDITION TO ADO’S THEOREM!
G. HOCHSCHILD

The main purpose of this note is to point out the following strength-
ened (with respect to the nilpotency property) form of the theorem
on the existence of a faithful finite-dimensional representation of a
finite-dimensional Lie algebra.

THEOREM 1. Let L be a finite-dimensional Lie algebra over an arbi-
trary field, and let o denote the adjoint representation of L. There exists
a faithful finite-dimensional representation p of L such that p(x) s
nilpotent for every element x of L for which a(x) is nilpotent.

For the suggestion that this nilpotency property of p might be
secured I am indebted to Leonard Ross who used the characteristic 0
case of Theorem 1 in his proof of Ado’s Theorem for graded Lie alge-
bras (Thesis, Cohomology of graded lie algebras, University of Cali-
fornia, Berkeley, 1964).

In the case of characteristic 0, it is known that there exists a faith-
ful finite-dimensional representation of L whose restriction to the
maximum nilpotent ideal of L is nilpotent [1, pp. 202-203]. Hence,
in order to establish Theorem 1 in the case of characteristic 0, it
suffices to make the following observation:

Let L be a finite-dimensional Lie algebra over a field of characteristic
0, and let M be a finite-dimensional L-module on which the maximum
nilpotent ideal N of L is nilpotent. Let x be an element of L whose adjoint
image a(x) is nilpotent. Then x is nilpotent on M.

Proor. Write L=S+R, where R is the radical of L and S is a
semisimple subalgebra of L. Accordingly, write x=s-+r, with s in
S and 7 in R. Since a(x) is nilpotent, it is clear that the adjoint
representation of S sends s onto a nilpotent derivation of S. Since S
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