
SMALL MODULES

W. W. LEONARD

Introduction. In [l] and [5] a left ^-module E is said to be small

(or superfluous) in P if E+H— F for any submodule H oi F implies

H=F. We define a left .4-module S to be small if it is a small sub-

module of some module. In what follows we investigate some proper-

ties of small modules and prove the following theorems:

Theorem. A torsion module over a principal ideal domain is small

if and only if the primary components are bounded.

Theorem. If A is a discrete valuation ring with prime p, and G an

A -module then the following conditions are equivalent:

(1) G is small,

(2) pG is small in G,

(3) G is the direct sum of a free module of finite rank and a bounded

torsion module.

The notation used in the following will be that of [2] and [3].1

Lemma 1. If E, F, and G are left A-modules such that EEFEG and
E is small in F then E is small in G.

Proof. Straightforward.

Lemma 2. If S is a small submodule of a left A-module F and S is

contained in a direct summand E of F then S is small in E.

Proof. Straightforward.

Theorem 1. A left A-module F is small if and only if F is small in
its injective envelope.

Proof. We will denote the injective envelope of a module P by

HP).
If F is small in J(P) then P is a small module by definition. Thus,

suppose P is a small submodule of a left .4-module H. Then FEH

EI(H), so by Lemma 1 P is small in IiH). Assume F+G = IiF) for

some submodule G of J(P). Since 7(P) is injective it is a direct sum-

mand of IiH) and PC-T(P). Thus, by Lemma 2 F is small in 7(P).
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1 The author is indebted to Dr. E. E. Enochs for his help and suggestions. He is

also obliged to the referee for his suggestions, especially for the proof 1 implies 3 of

Theorem 5.
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Theorem 2. Submodules, quotient modules and finite direct sums of

small modules are small.

Proof. Straightforward.

Corollary. The finite sum of small left A-modules which are sub-

modules of a given module is a small module.

If 7 is an infinite set it can be shown that Z(7) is not small in 0;(7)

and ZN is not small in QN where Z is the additive group of integers,

Q the additive group of rational numbers, and N the set of positive

integers. But, Z is a small group. Moreover, Z(px) is the sum of all

its proper subgroups, their injective envelope, and each subgroup is

small in Z(pm), but Z(p°°) is not small.

We now show that a module over a principal ideal domain is small

if and only if its torsion and torsion free parts are small.

Lemma 3. If E is a left A-module and SEF are submodules of E

such that S is small in E then F/S is small in E/S if and only if F is

small in E.

Proof. Suppose F+77 = E for some submodule 77 of E. Then

F/S=(H+S)/S = E/S, but F/S is small in E/S, hence (77+ S)/S
= E/S. Therefore, 77+S = E. But, S is small in E, hence H = E.

Thus F is small in E.

Conversely, assume F/SArH/S = E/S for some submodule 77 con-

taining S of E. Then (F-\-H)/S = E/S, hence F-\-H = E. But, F is

small in E, hence H=E. Thus, F/S is small in E/S.

Theorem 3. 7/^4 is a left hereditary ring and the sequence of left

A-modules, 0—>77—>G—>G/H—»0, is exact then 77 and G/H are small

modules if and only if G is a small module.

Proof. Since 77 is small in 7(77), 77 is small in 7(G). Moreover,

G/77 is small in I(G)/H since 1(G)/H is injective for A a hereditary

ring. Hence, by Lemma 3 G is small in 7(G), therefore a small

module.

Conversely, if G is small then 77 is small and G/77 is a small module

by Theorem 2.

Corollary. A module over a principal ideal domain is small if and

only if its torsion and torsion free parts are small.

Proof. A principal ideal domain is a hereditary ring.

Lemma 4. If G is a small module over a principal ideal domain then

the torsion submodule, T(G), is the only basic submodule of itself.
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Proof. G is small in 7(G), hence TiG) is small in 7(G). If B is a

basic submodule of TiG) then TiG)/B is small in 7(G)/P. But,

TiG)/B is divisible, hence P(G)/P = 0 or TiG)=B.

Lemma 5 (Kulikov). A primary module over a principal ideal do-

main has only one basic subgroup if and only if it is either divisible

or bounded.

Proof. [3, Theorem 31.3].

Theorem 4. A torsion module T over a principal ideal domain is

small if and only if the primary components of T are bounded.

Proof. Suppose P is small. P has a unique decomposition into its

primary components and by Lemma 4 T is the only basic submodule

of itself. Since T is not divisible by Lemma 5 the primary com-

ponents are bounded.

Conversely, assume the primary components of T are bounded.

Suppose F+77 = 7(F) for some submodule H of 7(F). Then Tp+Hp

= 7(P)P where Tp, Hp, and 7(F)P are the respective primary com-

ponents. There exists an integer N > 0 such that pNTp = 0. Hence,

pNiTp+Hp)=pNHp = pNIiT)p = IiT)p. Then H= ®PHP= ®pIiT)p

= ®PIiTp) = 7(F). Therefore, T is a small module.

Lemma 6. If A is a left hereditary ring then a left A-module F is

small if and only if F has no nontrivial injective quotients.

Proof. Assume P is not a small module. Then there exists a sub-

module 77 or 7(F) such that P+77 = 7(P) and 7/V7(F). Then the
sequence 0—>FC~\H—>P—>7(F)/77—>0 is exact and 7(P)/77 is injective.

Conversely, if F/H^O is injective for some submodule H of F then

P/77 is a direct summand of 1(F)/H. Thus, by Lemma 3 F is not

small in 7(F).

Lemma 7. A small torsion free module over a principal ideal domain

A has finite rank.

Proof. Suppose G is small, rkiG) — oo, and (x<)iejv is a maximal

linearly independent family of G. If K is the submodule generated

by ixdieN then K is isomorphic to A(N) which is not small. Therefore,

G is not small; contradiction.

If A is a principal ideal domain Ap will denote the localization of

A at the prime p and GP = AP®AG the localization of the A -module G.

Lemma 8. If A is a principal ideal domain and G an A-module then

G is small if and only if Gp is small for all primes p.
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Proof. Suppose Gp is small for all primes p and let J be an injec-

tive quotient of G. Then the exactness of the sequence G—>/—>0 im-

plies the sequence Gp—>Jp—>0 is exact for every prime p. Moreover,

Jp is injective. But, Jp = 0 for every prime p if and only if J = 0

([2], p. 82). Hence, the conclusion follows from Lemma 6. (Note that

this proof holds for any commutative ring.)

Suppose that G is small and J = GP/H9*0 is an injective quotient.

We may take J to be torsion. There is an ££G such that H = EP,

and we have J = GP/EP = (G/E)P. It follows that G/E is torsion with

p-primary component J, so J is a quotient of G. Since J is automati-

cally A -injective G is not small; contradiction.

Theorem 5. Let A be a discrete valuation ring with prime p, and let

G be an A-module. The following conditions are equivalent:

(1) G is small,

(2) pG is small in G,

(3) G is the direct sum of a free module of finite rank and a bounded

torsion module.

Proof. If 77£G then G/77 is injective «=>p(G/77) = G/77«=>77+pG
= G. Thus, (1)<=>(2) follows from Lemma 6.

(3)=>(1) follows from Theorem 2, Theorem 4, and the fact that

A is small.

(1)=>(3). By Theorem 4 the torsion part of G is bounded. Using the

corollary to Theorem 6 we reduce the problem to the torsion free

case. By Lemma 7 G then has finite rank. We want to show that G is

finitely generated, so suppose it is not. Choose F a free submodule of

G such that G/F is torsion. G/F is not finitely generated since F is

and G is not. Let A denote the completion of A. By Theorem 20 [4]

A®G is the direct sum of a free and a divisible module. Since G/F

= A®(G/F) = (A®G)/(A®F) is not finitely generated neither is

A ®G. Hence, A ®G has a nontrivial divisible part so, since A ®F is

free, it follows that G/F contains a nontrivial divisible module. This

contradicts the assumed smallness of G.

Corollary. If A is a principal ideal domain and if G is an A-

module then G is small if and only if G is locally a free module of finite

rank plus a bounded torsion module.
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AN ADDITION TO ADO'S THEOREM1

G. HOCHSCHILD

The main purpose of this note is to point out the following strength-

ened (with respect to the nilpotency property) form of the theorem

on the existence of a faithful finite-dimensional representation of a

finite-dimensional Lie algebra.

Theorem 1. Let L be a finite-dimensional Lie algebra over an arbi-

trary field, and let a denote the adjoint representation of L. There exists

a faithful finite-dimensional representation p of L such that pix) is

nilpotent for every element x of L for which a(x) is nilpotent.

For the suggestion that this nilpotency property of p might be

secured I am indebted to Leonard Ross who used the characteristic 0

case of Theorem 1 in his proof of Ado's Theorem for graded Lie alge-

bras (Thesis, Cohomology of graded lie algebras, University of Cali-

fornia, Berkeley, 1964).

In the case of characteristic 0, it is known that there exists a faith-

ful finite-dimensional representation of L whose restriction to the

maximum nilpotent ideal of L is nilpotent [l, pp. 202-203]. Hence,

in order to establish Theorem 1 in the case of characteristic 0, it

suffices to make the following observation:

Let L be a finite-dimensional Lie algebra over a field of characteristic

0, and let M be a finite-dimensional L-module on which the maximum

nilpotent ideal N of Lis nilpotent. Let x be an element of L whose adjoint

image a(x) is nilpotent. Then x is nilpotent on M.

Proof. Write L = S+R, where R is the radical of L and S is a

semisimple subalgebra of L. Accordingly, write x — s+r, with s in

S and r in R. Since a(x) is nilpotent, it is clear that the adjoint

representation of 5 sends s onto a nilpotent derivation of 5. Since 5
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