
APPROXIMATE STOLZ ANGLE LIMITS

L. E. SNYDER

1. Introduction. In a recent paper [4] the author discussed func-

tions of a real variable that are obtained as Soltz angle limits of func-

tions of two real variables. The central idea of this paper is the

weakening of the hypothesis of existence of limits with respect to

Stolz angles to existence of approximate limits with respect to Stolz

angles. A consequence of these investigations is another proof of the

fact that an approximate derivative is in the first Baire class. This

was proved by Tolstoff [5] in 1938 and more recently Goffman and

Neugebauer [2 ] gave a less involved proof than that of Tolstoff.

2. Definitions and notation. By a Stolz angle we mean an angular

sector in the upper half-plane with its vertex on the x-axis. If 5 is

such a Stolz angle and r a positive number, then Sr denotes the set of

points in 5 which lie on or below the line y = l/r. | E\ denotes either

the 1-dimensional or 2-dimensional Lebesgue measure of the set E.

It will be clear from the context which is intended.

Let Sx be a Soltz angle with vertex (x, 0) and let £ be a measurable

set in the upper half-plane. The lower metric density of E at (x, 0)

relative to Sx is

I sl r\ E |
lim inf —j——:-•

If this number is 1, the point (x, 0) is said to be a point of density of

E relative to Sx.

A function / of one real variable is called a boundary function of a

function <p defined on the upper half-plane if for each x, f(x) is the

limit of 4>(u, v) as (u, v) approaches (x, 0) relative to some set in the

upper half-plane with (x, 0) as a limit point.

The symbol co(x, /) denotes the oscillation of the function / at the

point x.

The symbol l(x, 8) denotes the half-line from the point (x, 0) whose

angle of inclination is d. R denotes the reals and W denotes the open

upper half-plane.

3. Main theorem. In this section Sx is used to denote the Stolz

angle with vertex (x, 0) which consists of the angular sector between

l(x, 7r/4) and l(x, 3ir/4).
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Theorem 1. Suppose <f>: W—>R and that for each xER there is a set

EXEW such that

(i)  (x, 0) is a point of density of Ex relative to Sx and

(ii) lim qbiu, v) exists as (ra, v)—>(x, 0) relative to the set Ex, for each

xER- Then the boundary function of <b determined by the family of sets

{Ex} is in the first Baire class.

Proof. Let/denote the boundary function. For the proof we show

that for any nonempty perfect set P, f\ P has a point of continuity so

that by Baire's theorem [3], / is in the first Baire class.

Suppose P is a nonempty perfect set such that/| P has no point of

continuity. Let D„ = {x EP:w(x, f\P) ^ 1/ra}. It follows that

P = U^°., Dn. Since each Dn is closed and P is of the second category

in itself, there is an ra0 and an open interval I such that IC\Pj£0

and D„0 contains IC\P. Let () = cl(PPiP). The set Q is perfect and

w(x, /| Q) ^ l/ra0 on IC\P.

Let El = Sir\Ex, where S*x is the set {(w, v)ESx:v^l/n}. For

each positive integer k, let Akbe the set defined by

Ak = {x E Q: | A" I  > 7/8 • | Sx |  for ra ̂  k

and p E Ehx => | <t>ip) - fix) |   < l/M},

where M=16ra0. Note that AkEAk+i. It also follows that <2 = Ut°°_1 Ak

since each point (x, 0) is a point of density of Ex relative to Sx and

fix) is the boundary limit of <p relative to Ex. Since Q is of the second

category in itself, there is an integer q and an open interval / such

that JC\Q^0 and Aa is dense in JC\Q.

Let Xo be a fixed point in Aqf^J. Note that if |x0 — x\ <l/q, then

|54r\5£|>l/4<z2=|5^|/4. Thusif *£ilan(*o-l/ff. *o + Vff), then
E%f\E%*0.

Let {xy} be any sequence of points in Q with x0 as limit. There is

an integer A such thatj>A implies that |x0 — x,-| <l/q and xjEJ-

Fix such a; and let r = max{g, kix/)}, where Hx,) is the smallest

positive integer k such that XjEAk. Since Aq is dense in JC\Q, there

is a point y in AqC\J such that | y — x,\ <l/r. It follows that ETvr\E/x.

^0 and Eir\Elo^0. Let SEAjnA;. and ijEA^^„- Then

l/fe) ~/(*o) |  g |/(«,) - <bi0 | + | *(f) -fiy) |

+ |/(y)-0(i»)l + |*(*)-/(*o)|

< 4/M

= l/4ra0.

But this implies that w(x0, f\ Q) ^ l/2ra0 which is a contradiction.
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Therefore /| P has a point of continuity for any nonempty perfect

set P.

4. Noncongruent Stolz angles. A function/: R—>7? is an honorary

function of the second class if there is a function g in the first Baire

class such that/(x) =g(x) except on a countable set. (This was intro-

duced by Bagemihl and Piranian [l].)

In Theorem 1 all of the Stolz angles were congruent and each was

symmetric about the vertical line through its vertex. This seems to be

a severe restriction and, as we shall see later, is more than is necessary.

However, if we drop the requirement that the Stolz angles be con-

gruent and require only that each Stolz angle Sx be symmetric about

the half-line l(x, ir/2), then the boundary function may be in the

second Baire class even though the function <p be continuous. This

is illustrated by the following theorem.

Theorem 2. If f: P—>P is any honorary function of the second Baire

class, then there is a continuous function <j>: W—->7t such that f is a bound-

ary function of <j> obtained by approximate limits relative to Stolz angles

Sx symmetric about the half-lines l(x, w/2).

Proof. Let g: R—+R be a function in the first Baire class which is

equal to/ except for a countable set. By a theorem in [4], there is a

continuous function tp: W-^R such that lim <p(u, v)=g(x) as (u, v)

—»(x, 0) relative to any Stolz angle with vertex (x, 0), i.e., for any

nontangential approach to (x, 0), the limit of ip exists and is equal to

g(x). Let {rn} be a sequential ordering of the exceptional points. For

each x, let Sx denote the Stolz angle which has as its sides the half-

lines l(x, it/A) and l(x, 37r/4). For x = rn, let Tx be a Stolz angle which

is symmetric about l(x, ir/2) and satisfies | Tx\ =|S£| -(1/2") for

every positive real number a. For each w = 1, 2, ■ • • , it is possible to

truncate Tr„ at some height, say l/k, so that Tfnr\\J"Zi TTi is empty.

Let us suppose that this has been done for each x = rn and let us de-

note the truncated Stolz angles by Tx likewise. Next let Tx be a trun-

cated Stolz angle contained in the interior of Tx except that Tx and

Tx have their vertex in common.

We define <p- W—*R as follows: let <p(u, v) = <p(u, v) for any point

(u, v) not in U^L, Int (Fr„), let <p(u, v)=f(x) for every point in Tx

(x = rn for some n), and extend continuously over the remainder of

Tr„ for each n.

For x = r„, the set Ex on which 0 has the proper boundary limit is

the set Tx. Then clearly (x, 0) is a point of density of Ex relative to

the Stolz angle Tx. For a point x which is not one of the rn's, the set
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Ex is Sx minus the union of the Trn's. It is clear from the definition

of (j> that <f> has the proper boundary limit relative to the set Ex. It

only remains to verify that (x, 0) is a point of density of Ex relative

to Sx. Let e>0 be given. There is an integer A such that ra> N implies

zZit-i 1/2*<e. Let M be chosen so large that m^M implies that

S?r\\JtiTr, = 0. For ml%M,

|~,m I ^x ^       •*■ *lt I  mm I

£* I   _ n-y+i        ^ t       A  [2Vj

00     1

= 1-   Z   ->!-<•
„«*+i 2"

This verifies the density of Ex at (x, 0) relative to Sx and completes

the proof.

In [4] it was shown that the class of functions which are Stolz

angle boundary functions is a proper subclass of the class of honorary

functions of the second Baire class. Here we note that if a function is

an approximate Stolz angle boundary function, with the Stolz angles

being suitably restricted, then the function is in the first Baire class,

whereas if the restrictions on the Stolz angles are slightly weakened,

then any honorary function can be realized as the approximate Stolz

angle boundary function of a continuous function.

5. Corollaries of Theorem 1. For each xE R, let Sx again denote the

Stolz angle whose sides are Z(x, 7r/4) and /(x, 37r/4). In the following

corollary it is shown that the hypothesis on the A^'s can be weakened

without changing the conclusion of Theorem 1.

Corollary 1. Theorem 1 remains valid if in place of (i) it is only

required that there is a constant A>l/2 such that the lower metric

density of Ex at (x, 0) relative to Sx is greater than or equal to K.

In order to prove Corollary 1 it is only necessary to make a few

modifications in the proof of Theorem 1. For example, define Akby

Ak = {xE Q: I El\ > f- \Snx\ for ra ̂  k and p E e\=>

\<f>ip)-fix)\  <1/M],

where 1/2 <f <K and M = 16«o. At a later step, assuming q has been

selected as before, it is necessary to find a positive number 5 so that

|x0 — x| <5 implies | 5'on5j| >2-(l— r/) ■ |5?J . From the previous

inequality it follows that £^£^0 for xE^</"Xx0-5, x0+5).

The remainder of the proof is essentially the same.
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Another direction to proceed in considering weakenings of the hy-

potheses of Theorem 1 is to allow more general Stolz angles Sx, that

is, to allow the "size" of Sx to vary with x. Of course, as can be seen

in §4, it will be necessary to impose some restrictions on the varying

in order to obtain the same conclusion as in Theorem 1.

We will continue to consider only Stolz angles Sx that are sym-

metric about the line l(x, ir/2). Let us suppose that a family of Stolz

angles {Sx: xER} is given. Let 8(x) denote the angle between the

sides of Sx. Then corresponding to the family {Sx: x£P} there is a

function 8: R—>(0, ir).

Corollary 2. Suppose 4>: W—>R and that for each x£P there is a

set EXEW such that

(i)  (x, 0) is a point of density of Ex relative to Sx and

(ii) lim <j>(u, v) exists as (u, v)—>(x, 0) relative to the set Ex, for each

x£P. If the function 8: R—>(0, ir) associated with the family of Stolz

angles is upper semicontinuous, then the boundary function f of <p de-

termined by the family of sets Ex: XERis in the first Baire class.

Proof. Suppose that there is a nonempty perfect set P for which

f\P has no point of continuity. For each » = 1, 2, • • • , let Bn

= {x£P: 8(x) z^l/n}. Since 8 is upper semicontinuous, each 75B is

closed. Also P = U„°_1 75„. Since P is second category in itself, there is

an integer wi and an open interval J such that 75B1 is dense in J(~\P

and JC\P9*0. From this it follows that BniDJf\P. Then 8(x)

^l/ni for x£7/\P. Then for each x£7P\P, let Tx be a symmetric

Stolz angle with vertex at (x, 0) and with the angle between its sides

being l/»i. The point (x, 0) is also a point of density of Ex relative

to T%.
The remainder of the proof consists of showing that/| P has a point

of continuity in JC~\P. This is accomplished by the same means used

in the proof of Theorem 1, using the P^'s instead of the original Sxs.

We omit the details of this.

6. Approximate derivatives. Let 70 be an open interval and let

/: 70—>P. The number A is called the approximate derivative of the

function / at x0 if there exists a set E, having x0 as a point of metric

density one, such that for x££ and x—»x0 we have

lim(/(x) — f(xo))/(x — xo) = A.

In this case we use the symbol faV(xo) for the number A. In this sec-

tion we are interested in the function f'av whenever it exists every-

where on some interval.
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Theorem 3. Let f: I0-+R. If f'aPix) exists for each xEAo, then the

function f'av is in the first Baire class.

Proof. For the proof we construct a function </>: J0X(0, a>) —>A

which has f'av as its approximate Stolz angle boundary function (in

the sense of Theorem 1).

Let U denote I0X(0, «>). If (x, r)EU and if x-r/2 and x+r/2

are both in I0, let</>(x, r) = (/(x+r/2)-/(x-r/2))/r. If (x, r)EU and

if either x — r/2 or x+r/2 is not in J0, let <p(x, r) =0.

Let XoEA) be fixed. We will show that there is a set EX„EU such

that (xo, 0) is a point of density of EXo relative to SXo and such that

lim </>(x, r) =/(x0) for (x, r)EEX(s and (x, r)—>(x0, 0). By hypothesis

there is a set BXoEIo such that the linear density of BXo at x0 is 1 and

lim (fix)— /(x0))/(x — Xo) =/a'p(x0) for xEP*o ar>d x-^x<>. Let Al0 be

the set defined by Ex„= {{x, r)EU: x0— r/2^x^x0+r/2, x+r/2

EBX„, and x —r/2EPx0}> and let {(x„, r„)} be a sequence of points

in Ex„ with (x0, 0) as limit. We have

\   ±. , ,'/     Nl fiXn + Tn/2)   -fiXn-rn/2) , I
| 0(*n, rn) — /ap(x0) |  =-/«jJ(xo)

r„ I

|//(xn + rn/2) — fi%o)        ,        \    (xn + rn/2 — x0\

I \    xn + rn/2 — xo /    \ rn /

,   /f(xo) - fixn ~ rn/2)        ,        \    (xo - xn + rB/2\ 1
+   (-~-faPiXo))-[- 1

\    xo — xn + rn/2 /    \ rn /I

fixn + rn/2) -fixo)        . fixo) -fix„-rn/2)        ,
^   -—-JZ-fapixo)   4-;-/„p(xo)  .

Xn + rn/2 — xo Xo — x„ + rn/2

The two expressions on the extreme right of the inequality approach

zero as ra—>°°   since xn — r„/2 and x„+r„/2  are in BXa. Therefore

4>iXn, rn)-*faP(Xo).

It remains to verify the density property of EXo. For this end, let

e be an arbitrary positive number. Since Bx„ has x0 as a point of dens-

ity, there is a number A(«) such that r < A(e) implies that

\BXor\ix0 — r, x0+r)| >(1 — e)-2r. Let r less than A(e) be fixed, and

let r] denote the linear Lebesgue measure of the intersection of EXlj

with the line y = r/2. Let D= {xEixo-r/2, Xo+r/2):x+r/2EBxtt

and x-r/2EP*„}> then v=\D\. Let F=(x0-r/2, x0+r/2)~D. If

xEF, then x+r/2 or x — r/2 is not in BX(t. But the points x+r/2 and

x — r/2 lie in the interval (x0 — r, Xo+r) and the measure of the set of
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points in (x0 — r, x0+r) which are not in Bx„ is less than e-2r. Thus the

measure of P is no more than e ■ Ar, and so rj > (1 — 2e) • 2r. It now fol-

lows that for r <P(e), the relative measure of 75l0 in SXQ, truncated at

y = r, is greater than or equal to (1 —2e) times the measure of the

truncated Stolz angle. This completes the proof.

Remark. Theorem 1 also implies the well-known fact that approx-

imately continuous functions are in the first Baire class. For if/: R—>R

is approximately continuous, let <j>(x, y) =f(x). Clearly / is an ap-

proximate Stolz angle boundary function for <j> in the sense of

Theorem 1.

In the theorems above, sets with zero density at certain points were

the exceptional sets. Analogous theorems are true if one considers

first category sets as the exceptional sets.

References

1. F. Bagemihl and G. Piranian, Boundary functions for functions defined in a disk,

Michigan Math. J. 8 (1961), 201-207.
2. C. Goffman and C. J. Neugebauer, On approximate derivatives, Proc. Amer.

Math. Soc. 11 (1960), 962-966.
3. F. Hausdorff, Set theory (Transl. 3rd ed. of Mengenlehre, 1937), Chelsea, New

York, 1957, 288-289.
4. L. Snyder, Continuous Stolz extensions and boundary functions, Trans. Amer.

Math. Soc. 119 (1965), 417-427.
5. G. Tolstov, Sur la derivie approximative exact, Rec. Math. (Mat. Sb. (N.S.))

4 (1938), 499-504.

Purdue University


