
ON THE CONVEXITY OF THE LEVEL CURVES
OF A POLYNOMIAL

A. W. GOODMAN1

1. Introduction. Let Zi, z2, • • • , zm be m distinct points in the

complex plane and let

m

(i) piz) = n iz - za)\
o-l

where the exponent ka is a positive integer which gives the multiplic-

ity of the root za (a= 1, 2, • • • , m).

Let £(c) be the open set defined as the set of z for which | Piz) \ <c,

and let T(c) denote the boundary of A(c). This set Tic), which is the

union of one or several simple closed curves, is just the lemniscate

\Piz)\=c.
The sets £(c) and T(c) have been the subject of many papers. In

particular the recent paper by Erdos, Herzog, and Piranian [l]

raises many interesting questions related to these sets, some of which

were answered by Pommerenke [2], [3].

A particular question raised by H. Grunsky and reported in [l] as

problem 16 is this: Suppose that the set A(c) has m components,

where m is the number of distinct roots of Piz); is it true that each

of the m components is a convex set?

It turns out that the answer is no, and we give our counterexample

in §2. After this work was completed, Professor Piranian directed me

to the paper by Pommerenke [3] who also found a counterexample.

But the polynomial proposed by Pommerenke has a rather high de-

gree, and further has a multiple root of high order. This leaves open

the question of the convexity of the components of £(c) when all of

the roots of Piz) are simple roots and A(c) has ra components, where

n is the degree of Piz). It turns out that even under these more

stringent conditions, the components of £(c) need not be convex, and

we give our counterexample in §3. Of course the polynomial pre-

sented in §3, supersedes the one presented in §2. However there are

some reasons for presenting both polynomials. The first one serves

to motivate the construction of the second one, and at the same time

it indicates the mechanism, and the difficulties involved in finding a

Presented to the Society, January 24, 1966; received by the editors August 12,

1965.
1 This work was supported by the National Science Foundation, Research Grant

GP-4025.

358



ON CONVEXITY OF LEVEL CURVES OF A POLYNOMIAL 359

suitable polynomial with only simple roots. Both polynomials are of

fourth degree, and thus represent a gain in economy and simplicity

over the Pommerenke counterexample.

2. The first counterexample. Let P(z) be the polynomial

(2) P(2)^(22+l)(2-2)2.

Then P'(z) =2(z-2)(2z2-2zA-l) and hence P'(z) vanishes for

2i*, z2* = (l±i)/2 and 23* = 2. If we set c=|P(zi*)|, we see that by

symmetry c= |P(22*)|, and for this c, the curve Y(c) has two double

points, one at Zi* and the other at z2*. Consequently E(c) has three

components as required by the conditions of our problem. Let E3(c)

be that component of E(c) that contains the point z3 = 2. Both the

points zi* and z2* are on the boundary of E3(c), so that if E3(c) were

convex, its closure would contain the line segment joining 2i* and z*

and in particular would contain the point x* = (R(2i*) = 1/2. Now di-

rect computation gives

\/i        \/i        3 VI      5a/5
o)     -iw>i=|(t+1)(t-t)|-—'

and

(4) IWl'(l+')(ff"'
Since 45/16 > 5a/5/4, it follows that x* lies outside the closure of

E3(c) and hence E3(c) is not convex. A rough sketch of T(c) will show

why E3(c) is not convex.

3. The second counterexample. The polynomial P(z) defined in

§2 has a double root at 2 = 2. Conceptually, it is an easy matter to

split the double root into two simple roots and still achieve a non-

convex component. However the direct computation is involved.

Whereas it was a simple matter to locate the roots of P'(z) in our

first counter example, this is not true when the 4 roots are distinct.

Hence we start with Q'(z) with known roots, and in fact we never

need to find the roots of Q(z) explicitly.

Set

(5) Q'(z) = 12(z2 + l)(z - a),       a> 0.

Then

(6) Q(z) = 3z4 - 4a23 + 6z2 - 12aZ + b,

where b>0 is a constant to be determined. Under these conditions,
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Qiz) has no roots that are real and negative. But the critical points

are at zi*, z2*= +i and zf = a. Hence by the Gauss-Lucas Theorem

(the roots of 0/ lie in the convex hull of the roots of Q) it is clear that

two of the roots of Qiz) are complex conjugates, z, and z2, with

(R(zi) = (R(z2)<0. Since <2(0)=6>0 and <2(z)->+°° as z->+oo, we

can locate the other two roots z3 and z4 if we know that Qia) <0.

Consequently one necessary condition on the constants a and b is that

Qia) = 3a* - 4a4 + 6a8 - 12a2 + b < 0

or

(7) 0 < b < a2ia2 + 6).

When the inequality (7) is satisfied the polynomial Qiz) has 4 distinct

roots, Zi, z2, Zz, and z4, with 0<z3<a<z4.

Just as for the polynomial of §2, we select c to be | 0(zi*) | where

z?=i, one of the critical points of Qiz). An easy computation gives

c2 =  | Qii) |2 = ib - 3)2 + 64a2.

With this selection of c, the set £(c) has at least three components

(and possibly four). Two of the components Ai and A2 are determined

by the roots z, and z2.

Since Qiz) has real coefficients, we can appeal to the symmetry of

A(c) about the real axis. It follows from this symmetry that the re-

mainder set £(c) —EiUE2, will consist of two components if and only

if | Qia) | 2: c. This occurs if and only if

ia2ia2 + 6) - b)2 ^ Q> - 3)2 + 64a4.

For computation, it is convenient to write this inequality as

(8) (a4 + 6a2 - 3) (a4 + 6a2 - 2b + 3) > 64a2.

Assuming that (8) is satisfied, A(c) will have four components Ei, E2,

Es and Ei where each Ea contains za, a = l, 2, 3, 4.

Following the pattern of proof used in §2, the component £3 will

not be convex if | Q(0) | >c= \ Qii) \. This is the case if and only if

b* > ib - 3)s + 64a2

or

(9) 66 > 9 + 64a2.

It only remains to select the positive constants a and b so that the

inequalities (7), (8), and (9) are satisfied. This is the case if a = 5 and

b = 303. Very likely 5 is the smallest integer that can be used for a,

while b = 303 is probably too large. Using these constants in equation
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(6) we have the

Theorem. Let c2 = 91,600 and let

(10) Q(z) = 324 - 20z» + 6z2 - 6O2 + 303.

Then the polynomial Q(z) has four distinct roots and one of the com-

ponents of E(c) is not convex.

To obtain the normalization of equation (1) we merely divide Q(z)

and c by 3.

4. Some open questions. One question that readily occurs is to

determine the maximum number of nonconvex components of E(c)

as a function of n, the degree of the polynomial. One can also search

for some additional restriction on the polynomial that will insure

that each component of E(c) is convex. One can also impose some

type of measure of the nonconvexity of a set, and try to determine

some maximum for this measure. Certainly in the two examples of

this paper the components E3(c) do not miss being convex by very

much.

Suppose again that for the polynomial defined by equation (1), the

set E(c) has m components. It seems to me that each component Ea

must be starlike with respect to the root za which it contains. How-

ever, I have not been able to prove this conjecture.

The referee of this paper suggested that the polynomial P(2)

= 2(z5 —1) also furnishes an interesting counterexample. When

c = 5/66/6 the curve T(c) contains 5 double points where the curve

intersects itself at right angles. Since these points all lie on the bound-

ary of the component of E(c) that contains z = 0, that component

cannot be convex.

The referee does not share the author's feeling that when the num-

ber of components equals the number of distinct roots, then the

components must be starlike. Rather he feels that one of the com-

ponents can approximate any shape. If this latter turns out to be the

case, it would be interesting to know the smallest degree for which

starlikeness of each component no longer holds.
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