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ON A THEOREM OF MOTZKIN CONCERNING POWER
SERIES WITH PERIODIC GAPS1

BASIL  GORDON

1. Introduction. Let/(z) = zZm-o arfln be a power series with radius

of convergence 1. If an = 0 ior all n = r (mod m), we say that/(z) has

the gap r (mod m). Here r and m are fixed integers with m>0. Now

suppose fiz) has g distinct gaps r%, • • • , r„ (mod m). These gaps are

called strongly distinct if for any divisor d of m, the number of in-

congruent rt (mod d) is ^ min (g, d). Thus for example the gaps 1,

2, 4, 6 (mod 8) are distinct but not strongly distinct.

Motzkin [l] has shown that if g^3, and if fiz) has g strongly dis-

tinct gaps (mod m), then /(z) has at least g + 1 singularities on

\z\ =1. In [2] he showed that when g = 4 or g^6, the number s of

singularities on \z\ =1 can be less than g + 1, but left unanswered the

question of determining the minimum value of 5 for given g. In this

paper it is shown that the answer to this problem is min (g + 1, 4) for

every g^O. In §2 we prove that 5^min (g + 1, 4), and in §3 we con-

struct examples with s = min (g + 1, 4).

2. Proof that 5^min (g+1, 4). Since Motzkin has already proved

this for g^3, we can assume g^4; it must then be shown that 5^4.

One might at first think that this could be done by choosing a subset

of 3 strongly independent gaps from the given set of g gaps, and then

applying Motzkin's result. But this is not possible in general, as can

be seen by considering the example where the gaps are the residue

classes 0, 2, 8, 10, 11 and 14 (mod 15).

The proof for g==4 is, however, patterned after that of [l] for

g = 3. The function /(z) has at least one singularity on |z| =1, say

at a. Suppose the given gaps are ru r2, ■ • • , r„ (mod m), and let e be

a primitive mth root of unity. It suffices to show that at least 4 of

the m functions /(e*z) (£ = 0, 1, • • • , m — l) are singular at z = a. We

suppose that only three of them, say/(z),/(€°z), andfiebz) are singular
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at a, and obtain a contradiction as follows (the proof would be even

easier if only one or two of the functions f(ekz) were singular at a;

we omit these cases here). The fact that f(z) has the gaps n, • ■ ■ ,r„

(mod m), is expressed by the identities

m—1

Y «-*"/(**«) - 0        (* = 1, • • • , g).
k=0

These linear equations cannot be solved for the functions f(z),f(eaz),

f(ebz) in terms of the remaining functions f(ekz), for the latter are

regular at a. Hence the gX3 matrix

-J       j-rm      e— rib-

M =    '■ •

_1    e_ro°    t-rtib_

has rank <3. Since its elements have absolute value 1, it follows

(cf. [l], p. 99) that either the rows or the columns of M can be di-

vided into two sets Mi and il72 such that the matrices Mi and il72

have rank 1. Suppose first that it is the rows which can be so divided.

If the ith and /th rows are proportional, they are equal, so

£rjO  _   er;a      an(J       ^h  —   er,&_

Hence

(fj — rAa = (r,- — rAb = 0 (mod m).

It follows that (a, m) =d>l, and that ri = rj (mod m/d). Hence the

r< fall into at most two residue classes (mod m/d), corresponding re-

spectively to the rows of il7i and M2. By the definition of strongly

distinct gaps, we must have m/d = 2, i.e. (a, m) =m/2. This implies

that a = m/2. Reasoning in the same way with the congruences

(»"< —r,-)6 = 0 (mod m), we find that b=m/2, a contradiction to the

fact that a9*b.

If it is the columns of M which can be divided into the two sets

Mi, M2 as described above, then there must in particular be two pro-

portional columns. If, the 1st and 2nd columns are proportional, then

ecr,—rj)a= 1 ( s0 (y._r^a==C) (mod m) for all i, j. This leads to the con-

tradiction r{ — ry = 0 (mod m/d), where d = (a, m). A similar contra-

diction arises by supposing proportionality of any two columns.

It should be noted that in the above proof the full force of the

hypothesis of strong distinctness was not used. It would suffice that

for any divisor d>2 of m, there are at least three incongruent r,-

(mod d), and in case 2\m, there are both odd and even r,-.
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3. Examples with s = min (g+1, 4). Let m = pq, where p and q

are distinct primes, and let e be a primitive pqth root of unity. Put

q-2 p-2

fiz) = (1 - z"")-1 T[izp - t"p) JT_(z« - «'*) = (1 - zp*)-mill2.
11=1 »-i

The singularities of /(z) are at those points e* which are not zeros of

Hi or n2. The factors of Hi are relatively prime in pairs, and the

same holds for the factors of n2. Moreover the polynomials zp — eliP

and zq — e"q have exactly one zero in common. Hence njL has

piq-2)+qip-2)-iq-2)ip-2)=pq-4: zeros. Thus/(z) has exactly

four singularities, all on \z\ =1.

To determine the gaps oi fiz), we expand (1 —zP5)-1 in a geometric

series, getting

fiz) =  Y[ izp - e"p) JJ iz" - «'«)(1 + zpq + z2pq +•••)•
H—l y-1

From this expression it follows that the coefficients an in the expan-

sion fiz) = zZn-o anZn are zero unless n = ap + bq (mod pq), where

Og.a^q — 2, OSb-^p — 2. Hence/(z) has (at least) p+q — l distinct

gaps (mod pq), namely the residue classes iq — l)p+bq and ap

+ ip — l)q, where O^a^q—1, O^bfsp — 1. We shall prove that these

gaps are strongly distinct. For this purpose it suffices to show that

they represent every residue class c (mod p) and every residue class

d (mod q). The congruence iq — l)p+bq = c (mod p) is equivalent to

bq = c (mod p), and this has a unique solution b (mod p), since

ip, q) =1. Similarly we can solve ap + ip — l)q = d (mod q) for a.

Next note that the residues ap + ip — l)q are all =—q (mod p),

while the residues iq — l)p+bq are all =—p (mod q). Hence if we

delete the gap pq — p—q, the remaining gaps are still strongly dis-

tinct. Deletion of such a gap can be accomplished without affecting

the number of singularities on |s| = 1 by adding to/(z) an appropri-

ate entire function (such as zpq~p~q exp zpq), or an appropriate ra-

tional function (such as zpq-p~q (2—zp9)_1).

Thus we have constructed functions with p+q — l or p+q — 2

strongly distinct gaps and exactly 4 singularities on \z\ =1. If Gold-

bach's conjecture is true, every integer 2:3 is of the form p+q — l or

p+q — 2. Together with the example (1—z0+1)_1 for g = 0, 1, or 2,

this would imply that the inequality 5^ min (g + 1, 4) is best possible.

To see this without resort to Goldbach's conjecture, we take q = 2 in

the above construction. After deleting the residue class pq — p — q

= p — 2, as already explained, we are left with p+q — 2=p gaps,
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namely the residue classes 2p — 2 and p + 26 (mod 2p), where 0^6

^p —2. These numbers represent every residue class (mod p) exactly

once. Since the first of them is even and the others are all odd, we

can delete as many of the gaps p + 26 as we please without destroying

the property of strong distinctness. Thus by adding entire (or ra-

tional) functions to f(z) as above, we can construct examples of

functions with 5 = 4 and g any integer in the range 0^g^p + l. This

clearly does what is required.

The above example can be modified so that the coefficients an in

the expansion/(z) = ^T-o anzn are all real. For example, if q>2, re-

place the expression H*~i (zp — e») by (zp — 1) Yll-l (zp — e»p), and if

p>2, replace H*-i (z5-e"5) by (z5-l)IT?-2 (zq-e*). These poly-

nomials have real coefficients, and the analysis of gaps and singulari-

ties is essentially the same as before.

References

1. T. S. Motzkin, Bemerkung uber Singularitdlen gewisser mil Liicken behafleler

Potenzreihen, Math. Ann. 109 (1933), 95-100.
2. -, Power series with gaps, Proc. Amer. Math. Soc. II (1960), 875.

University of California, Los Angeles


