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It is possible that these together with the constant unitary matrices

generate the whole class of such functions, but we have not been able

to prove it.
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ON THE RADIUS OF UNIVALENCE OF CERTAIN
ANALYTIC FUNCTIONS

A. E. LIVINGSTON

Let 6 denote the class of functions / regular and univalent in

E= {z\ \z\ <l}, which satisfy /(0)=0 and /'(0)=1 and which are

close-to-convex in E. Let X and S* denote the subfamilies of C,

made up of functions which are convex and starlike in E, respec-

tively. Recently, Libera [2] has shown that if / is a member of X,

S* or C, then the function F(z) = (2/z)fl f(t)dt is also a member of

X, S* or 6. It is the purpose of this paper to investigate the converse

question. That is, if F is in §*, what is the radius of starlikeness of

the function f(z)=[l/2][zF(z)]'? Similar questions are answered

under the assumption that F is in X or in C. Robinson [5] has shown

that if F is only assumed to be univalent in E, then / is starlike for

2 <,38. He pointed out that it is probable that/ is univalent for

2 <(l/2). We obtain this result under the added assumption that

F is a member of X, S* or 6.

The method of proof used in Theorem 1 has recently been employed

by MacGregor [4].
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Theorem 1. If F is in S*, then fiz) = [1/2 ] [zF(z)]' is starlike for

\z\ <l/2. This result is sharp.

Proof. Since Fis in S*, Re[zF'(z)/F(z)]>0for \z\ <1. Thus there

exists <j>, regular in E, such that |</>(z) | ^ 1 for z in E and such that

zfiz) -  f /(*)*
J Jo _zF'iz) _l-z<piz)

«/ 0

Thus

z(l + z<£(z)) J o

Therefore

zfiz) -  I   /(/)<#
zf'jz) _ -z<pjz) - zV(z)       JK'     JaJKJ

fiz) 1 + Z(j>iz) r'
(1) fit)dt

J o

1 - 2z<friz) - z2<p'iz)

1 + z<f>iz)

In order to determine where / is starlike, we must determine those

values of z for which the real part of the right hand side of (1) is

positive. This condition is equivalent to

(2) Re[l - 2z<Kz) - zV(z)][l + z4>iz)]~ > 0.

Condition (2) is equivalent to

(3) Re[*V(«)][l + **(*)]- < 1 - 2 | z |21 <piz) |2 - Re[z<Kz)].

Using the well known result

1 —  | z \'

and using the fact that Re [z<l>iz) ] g | z\ \<j>iz) |, we see that condition

(3) will be satisfied if

III"
(4) T3-|7h(1~ l*Wh(i+|«lkWi)

<(l-2|z||*(z)|)(l+ \z\\<biz)\).
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Condition (4) is equivalent to

(5) 2|2|2 + 2|Z|U(2)|(1-  |2|2)- |2|2U(2)|2<1.

Thus, we need only show that condition (5) holds for all functions <f>,

regular in E and satisfying |</>(z)| ^1 for z in E, provided \z\ <l/2.

If in (5) we let a= \ z\ and x= | <p(z) \, then it is sufficient to show

that for any fixed a, 0^a<l/2, the function p(x)=2a2-\-2a(l—a2)x

— a2x2 is bounded above by one for 0 5=x5Sl. It is easily seen that

p'(x)>0, O^x^l, provided that a <(V5 —1)/2 and therefore if a

<l/2. Thus, if 0^a<l/2, the maximum value of p(x), O^x^l, is

given by q(a) =2a-\-a2-2a\ Since q'(a)>0 for 0ga<l/2, q(a)

<q(l/2) = l for 0=a<l/2. Condition (2) is thus seen to be satisfied,

if \z\ <l/2. Hence/is starlike for \z\ <l/2.

To see that the result is sharp, let F(z) =z/(l—z)2 which is in S*.

Then,/(2) =2/(1-2)3 and 2/'(2)//(z) = (l+2z)/(l-z)=0fors = -1/2.

Thus,/ is not starlike in any circle \z\ <r, if r> 1/2.

Theorem 2. // F is in X, thenf(z) = [1/2] [zF(z) ]' is univalent in E

and is convex for \z\ <l/2. This result is sharp.

Proof. We have 2/(2) =2F'(2)+ zF"(z). Thus

rf(z)i rzF"(z)i
(6) 2 Re   J—^-    = 2 + Re   -—   .

LF'(z)\ L F'(z) J

Since F is in X, the right hand side of (6) is positive in E. Thus, / is

close-to-convex relative to F and therefore is univalent in E.

To show that/ is convex for | 2| < 1/2, we notice that 2/'(z) = [l/2]

• [z(zF'(z))]'. Since F is in X, zF' is in S*. Therefore, by Theorem 1,

zf is starlike for \z\ <l/2 and thus/is convex for | ̂  | <l/2.

To see that the result is sharp, let F(z) =2/(1—2) which is in X.

Then f(z) = (2z-z2)/2(l-z)2 and 1 + [zF"(z)/F'(z)] = (1 +2z)/(l -2)

= 0 for z= —1/2. Therefore / is not convex in any circle [2I <r, if

r>l/2.

Theorem 3. // F is in Q, then f(z) = 1/2 [2^(2)]' is close-to-convex

for \z\ <l/2. This result is sharp.

Proof. Since F is in 6, there exists G in S* such that

rzF'(z)A ,    .
(7) Reh«J>0  <w<1)-

Let g(z) = [1/2] [zG(z)]', then, by Theorem 1, g is starlike for

|2| <l/2. To prove the theorem, it is sufficient to show that

Re [2/'(2)/g(2)]>0 for [z| <l/2. We have
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*»    '/W-/,'/(W

«/ o

Thus, by (7), we may set

zfiz) - f 'fiDdt
(8) --^-= Piz)

f'giQdt

where P is regular in A and satisfies P(0) = 1 and Re (P(z))>0 for

z in E. We thus have

(9) zfiz) = P(«)f (*) + P'(z) f 'g(0*-
^ o

Therefore

(10) ^f = P(z) + F'(z)   -rr—  •
g(z) L    g(z)     J

Using the known result [l], [3], [6]

. .        2 Re[P(z)]

we have from (10)

Pf(z)l r        i 2 J0
(11) Re Uii   *ReP(«)]   1---rT——     .

U(z) J L        1 - |z|2       g(z)       J

Moreover

zgjz)     _ [l/2](z[zG(z)]Q _ i     zG'jz)

t" [l/2](zG(z))     = Giz)   '
I   git)dt

J o

Since G is in 8*, Re[zG'(z)/G(z)]>0 for z in E. Thus Re[zg(z)

//o g(<)<ft]>l for z in A. Hence, there exists <p~, regular in E and

satisfying    |#(z)| ^1   for   z   in   A,   such   that   zg(z)//o   git)dt =
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2/(l+a0(3)). Therefore

/g(t)dt
o zA-z2<b(z)        1    .

(12) ——   =   --1   =~i\A  + \s 2).
g(z) 2 2

Combining (11) and (12) we have

da) LewJ L      'TN'J
,ri -2 z h

The right hand side of (13) is positive provided |2| <l/2.

To see that the result is sharp, let F(z) =z/(l— z)2 which is in S*

and therefore in Q. Then/(z) =2/(1-z)3 and f'(z) = (IA-2z)/(I-z)4

= 0 for z= —1/2. Thus,/(z) is not univalent and therefore not close-

to-convex in |z| <r, if r>l/2.

An interesting subclass of (3 is that class made up of functions F

which satisfy Re [F'(z) ] > 0 for z in E [3 ]. Theorem 3 can be improved

for this subclass.

Theorem 4. Let F be such that Re[F'(z)]>0 for z in E and let

f(z) = [1/2 ] [zF(z) ]', then Re \f'(z) ] > 0 for \ z\ < (a/5 -1)/2. This result
is sharp.

Proof. Let F'(z) =P(z) where P(0) = 1 and Re(P(2)) >0 for z in E.

We then have

2/'(2) = 2F'(z) + 2F"(Z) = 2P(2) + 2f"(z).

Using again the fact that \P'(z)\ =2Re[P(z)]/[l-\z\2] ior z in E,

we have

2 Re[/'(2)] = 2 Re[P(2)] - |2||P'(2)|

= 2 Re[P(2)] [l-LiL-1
(14) L       1- \z\2J

The right hand side of (14) is positive provided |z| <(\/5 —1)/2.

To see that the result is sharp, let F(z) = —2 — 2 log(l—2). Then

/(z) = [1/2][222/(l-z)-2  log(l-z)] and f'(z) = (l+z-22)/(l-2)2

= OforZ=(l-V5)/2.
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