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1. Let A be a fixed compact Hausdorff space, C the Banach lattice

of continuous real functions on X, L its dual, and M its second dual.

The closure of C in M under the weak topology wiM, L) determined

by L is, as is well known, M itself. In fact, the closure of C under the

Mackey topology riM, L) is M itself, by the Grothendieck Theorem.

A deeper property is that this relationship between C and M also

holds under order-convergence, which is finer than riM, A)-con-

vergence. Let us examine this in more detail. An order-bounded net

{fa} in M converges to fEM if /=lim infa/a = lim supa/a, where

lim inf„/„= V« (As>«/s) and lim supa/a = Aa(V/?>a//3)- If a set A con-

tains all such limits of order-convergent nets of A, we say A is closed

under order-convergence, or simply closed. In general a set A is not

closed. However there exists a smallest closed set containing A, and

it is this set which is called the closure of A. With this definition we

have the property stated above: the closure of C under order-con-

vergence is M itself.

Unlike the case of topological convergence, the closure of a set A

cannot in general be obtained by adjoining to A all limits of order-

convergent nets of A. If we adjoin all such limits, the enlarged set

need not be closed, and it may be necessary to iterate the process

repeatedly, possibly a transfinite number of times, before every point

of the closure is obtained. In particular, the set obtained by adjoin-

ing to C all limits of order-convergent nets of C is a proper subset of

M. In [2] we gave this set the symbol U, since it corresponds to those

bounded functions on X which are integrable with respect to every

Radon measure ("universally" integrable), and we have studied its

properties in that and subsequent papers. Beyond U we did not go,

only conjecturing [3, §4] that it would require an uncountable num-

ber of iterations of the above process to obtain all of M.

Contrary to the conjecture, we now present a proof that every ele-

ment of M is the limit of an order-convergent net of U. Thus all of

M can be obtained from C by one iteration of the operation of adjoin-

ing limits of order-convergent nets.

2. The theorem we actually prove is considerably stronger than

the above statement. We call a set A o-closed, if it contains all limits

of order-convergent sequences of A. The smallest cr-closed set con-
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taining a set A is called the a-closure of A. Following function theory

usage, we call the tr-closure of C the Baire subspace of M, and denote

it by Ba. U is o--closed [2, (8.2) ], hence we have CEBa C U. As with

nets, we can iterate the process of adjoining limits of order-convergent

sequences. The set obtained by adjoining such limits to C is called

the first Baire class and denoted by Ba1; the set obtained by doing

this to Ba1 is called the second Baire class Ba2; and so forth. We can

now state our theorem.

Theorem 1. Every element of M is the limit of an order-convergent

net of Ba2.

Before proceeding with the proof, we recall some properties of L

and M [2; 3 ]. Given an element p of L, we will call the closed (vector-

lattice) ideal 7 in L generated by p a principal closed ideal. In what

follows 7's will always denote principal closed ideals of L. Given

7i, I2, then 7i+72 is also a principal closed ideal, and thus the family

{7} of all principal closed ideals of L is a directed set under inclusion.

Each 7 is a topological direct summand of L, hence its dual is a

direct summand of M. We denote it by Mi, and for each fEM, we

denote the component of / in Mi by //. For use below, we note the

trivial property that for any pEI, fi(p) —f(p)- (Incidentally, we use

f(p) and p(f) interchangeably: f(p) = p(f).)
Mi is actually a closed ideal in M, hence the projection operation

f—*fi of M onto Mi preserves suprema and infima:

(i) Iff— Va/0, then fi= V„ (/<*)/; and similarly for A.
We will also need the well-known property (cf. the proof of (12.3)

in [2]):

(ii)  For each 7, the projection of M onto Mi maps Ba2 onto Mi.

(Since 7 can be identified with £l(p), p any element generating 7,

then Mi can be identified with £x(p), so the above is simply the com-

mon statement that every element of £"(p) has a representative in

Ba2.)

We turn to the proof of the theorem. Consider /£ M, and we can

confine ourselves to the case 0^/^l. For each 7, choose g(T)EBa2

such that (g(I))i=fi. Moreover, replacing g(7) by (0Vg(7))Al if

necessary, we can assume 0^g(7)gl (from (i), [(0Vg(7))Al]r

= (0V(g(7))j) A1/=//). The collection {g(7)|all7J is a net, since the

7's form a directed set. We show lim sup/ g(7) =/; as the same argu-

ment will hold for lim inf/ g(7) =/, this will establish the theorem.

Set h = lim sup/ g(7). What we have to show is that h(p) =f(p) for

all pEL. It is enough to show

(iii) hi =fi for all I,
because then, given any pEL and choosing for 7 the principal closed
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ideal generated by p., we have Hp)=hi(jx) =//(m) =/(m)-

For each 7, set HI) = VV=j g(/); then by definition, A = A»n i HI).
Now JDI implies (g(/))r = ((g(/))/)/ = ifj)i=fi. It follows from (i)
not only that iHI))r=fr, but that iHJ))i=fi for every /DA Apply-
ing (i) again, this time to A = A»n r «(/), we have hr=fi for all A

3. Let A be a sub-vector-lattice of M (we restrict ourselves to a

sub-vector-lattice for convenience). There is a more refined process

for obtaining the closure of E than the iterated adjunction of limits

of order-convergent nets. Let us denote by D (A) the Dedekind closure

of E: the set of elements of M each of which is both a supremum of

some subset of E and an infimum of some subset of E. Z?(A) is also

a sub-vector-lattice. It is Dedekind-closed, hence the operation can-

not be iterated. A larger sub-vector-lattice is the linear subspace

generated by the elements of M each of which is a supremum of some

subset of E or an infimum of one. We denote it by SiE) [2, §6]. It is

easily verified that SiE) =.S(Z>(£)), so if we use the latter notation,

we can write

(2) E C D{E) C SiDiE)).

This process can now be iterated, and we obtain an ascending chain:

(3) E C DiE) C SiDiE)) C D(S(DiE)))C

How is this chain related to the ascending chain obtained by ad-

junction of limits of order-convergent nets? It is easy to see that the

set of limits of order-convergent nets of E is contained in £>(5(Z>(£))).

An immediate question is whether equality necessarily holds. If such

is the case, then each even term in the above chain (from the fourth

term on) is the set of limits of order-convergent nets of the preceding

even term. We do not know whether such is the case in general; how-

ever, for the situation in which we are interested, E—C, equality does

hold. We first note that C = DiC), that is C is Dedekind-closed; next

that SiDiO) =SiC) is our space S of semicontinuous elements;

finally, that Z>(S(D(C))) is our space U [2]. The first six terms of the

above chain thus become

(4) C = CESEUE SiU) C DiSiU)).

That U is the set of limits of order-convergent nets of C was shown

in [2, (9.6)]. That £>(5(f/)) is the set of limits of order-convergent

nets of U is trivial, since this latter set is all of M (Theorem 1).

Moreover, the chain has come to an end:

Theorem 2. DiSiDiQ))=DiSiU)) = M.
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4. A glance at the chain in (4) raises an immediate question: what

is the relation of S(U) to M, and in particular, is it all of Ml We

present some properties of S(U) in the direction of answering this.

We can write L = LQ ffi Li, where L0 is the ideal of the atomic

(Radon) measures and Li that of the diffuse, or purely nonatomic,

ones. This gives the decomposition M— Mo®Mi, and we will call

Mo the atomic part and Mi the diffuse part of M. Mo is isomorphic

with the space of all bounded real functions on X. The first property

of S(U) which we note is that it contains M0. To see this we remark

that for each x£A", the characteristic function of x in M0 is a u.s.c.

element [2, (6.8)], hence in U. Since every element of (M0)+ is a

supremum of finite linear combinations of such characteristic func-

tions, M0ES(U).

A consequence of this is that the projection (S(U))i is identical

with (S(U))r\Mi. For, given fES(U), f-fiEM0ES(U), hence
fi=f+(fi-f)eS(U). Thus S(U)=M0®[(S(U))nMi], and the
problem is reduced to one on Mi.

We turn to another property of S(U). In the remainder of the

paper, given pEL, we will denote the ideal 7 generated by p byL„,

and we will write M„, f„ for Mi, fi.

Theorem 3. For every pEL, M„ES(U). More explicitly, each

fE(M,/)+ is an infimum of elements of U.

Proof. Consider a fixed pEL, and since Lll = L\IL\, we can assume

P>0.

Lemma 1. For every vEL, v>0 such that p/\v = 0, there exists a u.s.c.

element f satisfying:

0:2/^1,        p(f) = 0,        v(J) > 0.

For simplicity, assume y(l) = l. We will define by induction, a

sequence {/„} EC such that

(i) /i £ /> fe • • • ,

(ii)   p(fn) 5i l/2»+i » = 1, 2, • • • ,

(iii)   v(fn) ^ (1/2) + (1/2-+1)        n = 1, 2, . • . .

Since p/\v = 0, we can write 1 =/i+gi,/i, gi>0, such that p(fi) ^1/4,

Kgi)^l/4, whence v(fi)^3/i [l, Chapter II, §2, Proposition 3].

Assume fi, • • • , fn-i have been chosen to satisfy the above condi-

tions. Then write /B_i=/B+gB, /„, gB^0, such that p(fn) gl/2n+1,

v(gn) =§ l/2»+1, whence v(fn) ^ (1/2) + (1/2-) - (1/2-+1) = (1/2)

+ (l/2"+1). This establishes the induction and gives us our sequence.
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Now set f=l\nfn. Then p.(/)=0 and, since v is continuous on M,

K/)£i/2.

Lemma 2. For every vEL, v>0, such that p/\v = 0, there exists a

component e of 1 which is an element of U and satisfies: p,(e)=0,

vie)>0.

Let /be the element obtained in Lemma 1. Then V„/A(ral) is the

desired e.

We now proceed to prove the theorem.

(a) The theorem is true for 1„.

It is enough to show that 1 —1„ is a supremum of elements of U.

Let {va} be the set of elements v>0 of L such that /uAf = 0, and for

each a, denote the e of Lemma 2 by ea. We show 1 —1„ = Va ea. Set

e= 1 —1„ — Va ea and suppose e^O. Then there exists vEL, v>0, such

that j<(1 — e) =0 [3, (3.4)] (the Q in this reference should read Q). On

the one hand this says that j>(1„) =0, hence j'Am = 0, and thus v is a pa.

On the other hand it says that viea)=0 for all a. We thus have a

contradiction, and (a) is established.

(b) The theorem is true for every component of 1„, and therefore for

positive finite linear combinations of such components.

Every component is easily shown to be a 1„ for some vEL, hence

the argument of (a) applies. The rest of the statement is clear.

Now every element of (AQ+ can be approximated normwise by

positive finite linear combinations of components of lp. Hence, to

complete the proof, we need only show that the set of elements which

are infima of elements of U is closed under the norm. While easily

proved directly, this is a corollary of

Theorem 4. The set of elements which are infima of elements of U is

a-closed.

Proof. Denote the set by A. It is easily verified that A is closed

under the operation of taking finite suprema. To prove the theorem,

it will be sufficient to show A is closed under countable suprema, that

is, {/„} EA, f= Vnfn implies fEA. And from our first observation,

we can assume /i^/2=S • • • . Set g = A {hE U\h^f}; we show giv)

=fiv) for all vEL+, whence g=f.
Consider vEL+. Since g^/, we need only show that for e>0,

(i) giv) £ fiv)+e.
We will obtain by induction a sequence {hn} EU satisfying:

(ii)        hi ^ h2 ^ • • •

(iii)       K^fn ra = 1, 2, • • •

(iv)  *,(") ̂  AW + (1 - 2"")«      « = 1, 2, • • •.
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Choose hiEU such that h^fi and hi(v) ̂ fi(v)A-e/2. Assume^, • • • ,
&„-i have been chosen to satisfy (ii), (iii), (iv). Now/„V^-i=/»

+ (A.-i-/»)+^/»+(A»-i-/»-0, hence Cf.Vik^OW^/wW+i^iW
—/B-i(»0S=/BM + (l—2_(n-1))e. Since /BV^B-i£^4, we can choose

AB£ (7such that K^fnVK-i and A»M ̂ (/„\A„-i)(jO + 1/2\ Ab then
satisfies (ii), (iii), (iv).

Since {/„} is bounded above, we can choose the hn's so that {hn}

is bounded above, and therefore h = V„ hn exists. Since U is a-closed

[2, (8.2)], hEU; also h^f; finally, h(v) =supn A» gsup„/»t» + e.
It follows from the definition of g, that gSA, hence (i) holds, and we

are through.

Theorem 4 of course holds also for the set of elements which are

suprema of elements of U. Whether S(U) itself is o--closed, or even

norm-closed (not to mention equal to M), we do not know.

A final remark. It is easy to show that53„e/, Mli = \ili&L M„, is an

ideal, is er-closed, and is dense in M (but is not equal to M). Thus,

from Theorem 3, S(U) contains a enclosed ideal which is dense in M.
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