ON SECTIONAL CURVATURES AND CHARACTERISTIC OF HOMOGENEOUS SPACES

WERNER GREUB AND PHILLIPPE TONDEUR¹

Let X be a compact orientable Riemannian manifold of even dimension n. The generalized Gauss-Bonnet theorem [1] states that the Euler-Poincaré characteristic of X is

(1)
$$\chi(X) = \frac{2}{\epsilon_n} \int_X \gamma_n \omega$$

where c_n is the volume of the Euclidean unit n-sphere, γ_n the nth sectional curvature (see the definition (2) below) and ω the volume element of the Riemannian structure of X. It is a still open question, whether the fact that the usual sectional curvature (second order sectional curvature) γ_2 has a constant sign for all plane sections, has some implications on the sign of γ_n . Such results would give interesting applications via the generalized Gauss-Bonnet theorem. A known result in this direction is Milnor's theorem (see [2, Theorem 5]), stating that for n=4 the Euler-Poincaré characteristic is positive, if γ_2 is always positive or always negative.

We shall consider the class of Riemannian manifolds arising by division of a compact Lie group G by a closed subgroup H and equipment of the quotient G/H with the invariant Riemannian metric g induced by a bi-invariant metric g on G. Consider the orthogonal decomposition

$$G = H \oplus M$$

with respect to g, turning G/H into a reductive homogeneous space. We shall make the assumption that G/H is locally symmetric, i.e. $[M, M] \subset H$. Let $n = \dim G/H$. With these notations we shall prove the following.

THEOREM. Let p be any even integer with $0 . Then the pth sectional curvature <math>\gamma_p$ is nonnegative.

REMARK. For p=2 this was proved in [6] even without the assumption of the local symmetry of G/H, and follows also at once from the formulae in [5]. As remarked in [7], the proof of Milnor's result in [2] shows that $\gamma_2 \ge 0$ implies $\gamma_4 \ge 0$.

Received by the editors February 10, 1965.

¹ The second author was supported by NSF grant GP-1217 at Harvard University.

COROLLARY [3]. Let the situation be as before. Then the Euler-Poincaré characteristic of G/H is nonnegative.

PROOF. Without loss of generality we can assume that H is connected. Hence G/H is orientable. We only have to consider the case when the dimension n of G/H is even. Then the Gauss-Bonnet theorem yields the desired result.

This answers, for the class of spaces considered, the question raised in [6, p. 13, line 5].

REMARK. Suppose the dimension n of G/H to be even. Then by homogeneity, the sectional curvature γ_n is seen to be constant [7]. Therefore $\chi(G/H)$ and γ_n are either both positive or both zero.

We recall the definition of the sectional curvatures of a Riemannian manifold X of (not necessarily even) dimension n (see [7]). Let p be an even integer with $0 , <math>x \in X$ and $P \subset T_x(X)$ a p-plane at x. Let X_1, \dots, X_p be any orthonormal base of P and R the curvature tensor at X of the Riemannian metric \langle , \rangle . Then the pth sectional curvature of the p-plane P is given by

(2)
$$\gamma_{p}(x; P) = \frac{(-1)^{P-2}}{2^{p/2} \cdot p!} \sum_{\sigma, \tau} \epsilon(\sigma) \epsilon(\tau) \langle R(X_{\sigma_{1}}, X_{\sigma_{2}}) X_{\tau_{1}}, X_{\tau_{2}} \rangle \cdot \cdot \cdot \cdot \cdot \cdot \cdot \langle R(X_{\sigma_{p-1}}, X_{\sigma_{p}}) X_{\tau_{p-1}}, X_{\tau_{p}} \rangle.$$

Here the sum ranges over all permutations σ , τ of the set $\{1, \dots, p\}$ and $\epsilon(\sigma)$, $\epsilon(\tau)$ are the signs of the permutations σ , τ respectively. For p=2, formula (2) is the usual expression

(3)
$$\gamma_2(x; P) = -\langle R(X_1, X_2) X_1, X_2 \rangle$$

in view of the skew-symmetry of the operator $R(X_1, X_2)$ with respect to \langle , \rangle .

We now turn to the case X = G/H considered in the theorem. As G/H is supposed to be locally symmetric in its canonical reductive structure, the canonical connection [5] is the Riemannian connection of \tilde{g} . Let $\langle , \rangle \colon G \times G \to R$ denote the restriction of g to G and let x_0 be the point of G/H corresponding to the unit e of G. $T_{x_0}(G/H)$ is identified with the orthogonal complement M of H in G. Then we have the following known

LEMMA. Let R be the curvature tensor of \tilde{g} in x_0 . Then for X, Y, V, $W \in T_{x_0}(G/H)$ we have

$$\langle R(X, Y)V, W \rangle = -\langle [X, Y], [V, W] \rangle.$$

PROOF. By [5, Theorem 10.3], we have in view of the preceding remarks

$$R(X, Y)V = -[[X, Y], V].$$

Note that $[X, Y] \in \mathcal{H}$, as we have supposed G/H to be locally symmetric. Now \langle , \rangle is invariant under the adjoint representation of H, so that

$$\langle [[X, Y], V], W \rangle = \langle [X, Y], [V, W] \rangle.$$

This proves the lemma.

The theorem is now a consequence of the following

PROPOSITION. Let the situation be as above. Let $P \subset T_{x_0}(M)$ be a p-plane, p an even integer with $0 and <math>X_1, \dots, X_r$ $(r = \dim G)$ an orthonormal basis of G such that the first p vectors lie in P and the last r-n vectors in H. Then the pth sectional curvature is given by

$$\gamma_{p}(x_{0}; P) = \frac{1}{2^{p/2} \cdot p!}$$

$$\cdot \sum_{k_{1}, \dots, k_{p/2}} \left(\sum_{\sigma} \epsilon(\sigma) \langle [X_{\sigma_{1}}, X_{\sigma_{2}}], X_{k_{1}} \rangle \cdot \dots \langle [X_{\sigma_{p-1}}, X_{\sigma_{p}}], X_{k_{p/2}} \rangle \right)^{2}$$

where σ runs through the permutations of $\{1, \dots, p\}$, $\epsilon(\sigma)$ is the sign of σ , and $(k_1, \dots, k_{p/2})$ runs through the p/2-tuples of integers k_i with $r-n < k_i \le r$ for $i = 1, \dots, p/2$.

PROOF. By (2), we have in virtue of the lemma

$$\gamma_{p}(x_{0}; P) = \frac{1}{2^{p/2} \cdot p!} \sum_{\sigma, \tau} \epsilon(\sigma) \epsilon(\tau) \langle [X_{\sigma_{1}}, X_{\sigma_{2}}], [X_{\tau_{1}}, X_{\tau_{2}}] \rangle \cdot \cdot \cdot \cdot \cdot \langle [X_{\sigma_{p-1}}, X_{\sigma_{p}}] [X_{\tau_{p-1}}, X_{\tau_{p}}] \rangle.$$

We write $c_{\alpha\beta}^{\gamma}$ for $\langle [X_{\alpha}, X_{\beta}], X_{\gamma} \rangle$, so that $[X_{\alpha}, X_{\beta}] = \sum_{\gamma=1}^{r} c_{\alpha\beta}^{\gamma} X_{\gamma}$ (the c's are the structural constants of G). Using $[M, M] \subset H$ and the orthonormality of the base we obtain then

$$\langle \left[X_{\sigma_1}, \ X_{\sigma_2} \right], \ \left[X_{\tau_1}, \ X_{\tau_2} \right] \rangle = \sum_{k_1 = r - n + 1}^r c_{\sigma_1 \sigma_2}^{k_1} c_{\tau_1 \tau_2}^{k_1}$$

and similar expressions for the other terms in (5). Hence

(6)
$$\gamma_{p}(x_{0}; P) = \frac{1}{2^{p/2} \cdot p!} \sum_{\sigma, \tau} \epsilon(\sigma) \epsilon(\tau) \left(\sum_{k_{1}=r-n+1}^{r} c_{\sigma_{1}\sigma_{2}}^{k_{1}} c_{\tau_{1}\tau_{2}}^{k_{1}} \right) \cdot \cdot \cdot \left(\sum_{k_{n}/2=r-n+1}^{r} c_{\sigma_{p-1}\sigma_{p}}^{k_{p/2}} c_{\tau_{p-1}\tau_{p}}^{k_{p/2}} \right).$$

The $\sum_{\sigma,\tau}$ in (6) can be rewritten as

$$\sum_{k_1,\dots,k_{p/2}=\tau-n+1}^{\tau} \left(\sum_{\sigma} \epsilon(\sigma) c_{\sigma_1 \sigma_2}^{k_1} \cdot \cdot \cdot c_{\sigma_{p-1} \sigma_p}^{k_{p/2}}\right) \left(\sum_{\tau} \epsilon(\tau) c_{\tau_1 \tau_2}^{k_1} \cdot \cdot \cdot c_{\tau_{p-1} \tau_p}^{k_{p/2}}\right),$$

or

$$\sum_{k_1, \dots, k_p/2 = r-n+1}^r \left(\sum_{\sigma} \epsilon(\sigma) c_{\sigma_1}^{k_1} c_{\sigma_2} \cdot \dots \cdot c_{\sigma_{p-1}\sigma_p}^{k_p/2} \right)^2.$$

This proves the proposition.

Observe that for the usual sectional curvature γ_2 one obtains (directly by the lemma) the expression

$$\gamma_2(x_0; P) = \langle [X_1, X_2], [X_1, X_2] \rangle$$

i.e. $\gamma_2(x_0; P) = 0$ if and only if $[X_1, X_2] = 0$ (see [6]). Thus by (4) we clearly have the implication $\gamma_2 = 0 \Rightarrow \gamma_p = 0$; for all even p with 0 . This is true for any Riemannian manifold [7, Theorem 6.4].

We remark that our theorem applies in particular to compact Riemannian symmetric spaces equipped with the metric arising naturally from a bi-invariant metric on the group of isometries.

The manifold of a compact Lie group G is with respect to a biinvariant metric g a Riemannian symmetric space and one can obtain the sectional curvatures by applying the proposition. But in this case it is simpler to observe that the (0)-connection of G [5, p. 49] is the Riemannian connection of g. The expression R(X, Y)V =-[X, Y], V]/4 for the curvature tensor R in e; X, Y, $V \in G$ [5, p. 49] shows that

$$\langle R(X, Y)V, W \rangle = -\langle [X, Y], [V, W] \rangle / 4.$$

By a similar computation as in the proof of the proposition, one obtains for the pth sectional curvature γ_p on a p-plane $P \subset G$ the expression

(7)
$$\gamma_{p}(e; P) = \frac{1}{2^{3p/2} \cdot p!}$$

$$\cdot \sum_{k_{1}, \dots, k_{p}/2} \left(\sum_{\sigma} \epsilon(\sigma) \langle [X_{\sigma_{1}}, X_{\sigma_{2}}], X_{k_{1}} \rangle \cdot \cdot \cdot \langle [X_{\sigma_{p-1}}, X_{\sigma_{p}}], X_{k_{p}/2} \rangle \right)^{2}$$

where X_1, \dots, X_n is an orthonormal base of G, σ runs through the permutations of $\{1, \dots, p\}$ and $(k_1, \dots, k_{p/2})$ runs now through all p/2-tuples of integers k_i with $1 \le k_i \le n$ for $i = 1, \dots, p/2$.

For an even-dimensional group it is clear that $\gamma_n = 0$ by the generalized Gauss-Bonnet theorem. (7) gives therefore the identity

$$\sum_{\sigma} \epsilon(\sigma) \langle [X_{\sigma_1}, X_{\sigma_2}], X_{k_1} \rangle \cdot \cdot \cdot \langle [X_{\sigma_{n-1}}, X_{\sigma_n}], X_{k_{n/2}} \rangle = 0$$

valid for any orthonormal base X_1, \dots, X_n of G and any n/2-tuple of integers k_i with $1 \le k_i \le n$ for $i = 1, \dots, n/2$.

REFERENCES

- 1. S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet theorem for closed Riemannian manifolds, Ann. of Math. 45 (1944), 747-752.
- 2. ——, On curvature and characteristic classes of a Riemannian manifold, Abh. Math. Sem. Univ. Hamburg 20 (1956), 117-126.
- 3. H. Hopf and H. Samelson, Ein Satz über die Wirkungsräume geschlossener Liescher Gruppen, Comment. Math. Helv. 13 (1940-1941), 240-251.
- 4. A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
- 5. K. Nomizu, Invariant affine connexions on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
- 6. H. Samelson, On curvature and characteristic of homogeneous spaces, Michigan Math J. 5 (1958), 13-18.
- 7. J. Thorpe, Sectional curvatures and characteristic classes, Ann. of Math. 80 (1964), 429-443.

University of Toronto,
Harvard University and
University of California, Berkeley