
ON SECTIONAL CURVATURES AND CHARACTERISTIC
OF HOMOGENEOUS SPACES

WERNER GREUB AND PHILLIPPE TONDEUR1

Let Zbea compact orientable Riemannian manifold of even di-

mension n. The generalized Gauss-Bonnet theorem [l] states that

the Euler-Poincare characteristic of X is

(1) X(X)  = -   f 7„0>
cnJ X

where c„ is the volume of the Euclidean unit w-sphere, yn the nth

sectional curvature (see the definition (2) below) and to the volume

element of the Riemannian structure of X. It is a still open question,

whether the fact that the usual sectional curvature (second order

sectional curvature) y2 has a constant sign for all plane sections, has

some implications on the sign of yn. Such results would give interest-

ing applications via the generalized Gauss-Bonnet theorem. A known

result in this direction is Milnor's theorem (see [2, Theorem 5]),

stating that for w = 4 the Euler-Poincare characteristic is positive, if

72 is always positive or always negative.

We shall consider the class of Riemannian manifolds arising by

division of a compact Lie group G by a closed subgroup 77 and equip-

ment of the quotient G/77 with the invariant Riemannian metric g

induced by a bi-invariant metric f on G. Consider the orthogonal

decomposition

G = H@ M

with respect to g, turning G/77 into a reductive homogeneous space.

We shall make the assumption that G/77 is locally symmetric, i.e.

[M, M]EH. Let « = dim G/77. With these notations we shall prove

the following.

Theorem. Let p be any even integer with 0 <p^n. Then the pth sec-

tional curvature yp is nonnegative.

Remark. For p = 2 this was proved in [6] even without the as-

sumption of the local symmetry of G/77, and follows also at once

from the formulae in [S]. As remarked in [7], the proof of Milnor's

result in [2] shows that y2 = 0 implies 74^0.
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Corollary [3]. Let the situation be as before. Then the Euler-

Poincare characteristic of G/H is nonnegative.

Proof. Without loss of generality we can assume that H is con-

nected. Hence G/H is orientable. We only have to consider the case

when the dimension ra of G/H is even. Then the Gauss-Bonnet theo-

rem yields the desired result.

This answers, for the class of spaces considered, the question

raised in [6, p. 13, line 5].

Remark. Suppose the dimension ra of G/H to be even. Then by

homogeneity, the sectional curvature yn is seen to be constant [7].

Therefore xiG/H) and y„ are either both positive or both zero.

We recall the definition of the sectional curvatures of a Riemannian

manifold X of (not necessarily even) dimension ra (see [7]). Let p be

an even integer with 0<p^n, xEX and PETxiX) a £-plane at x.

Let Xi, • • ■ ,XP be any orthonormal base of P and R the curvature

tensor at X of the Riemannian metric ( , ). Then the pth sectional

curvature of the £-plane P is given by

tp(*; p) = ~^tt £ «W«W(K(^ ^/)Xn, xri) ■ ■ ■

• • -(RiXCp_v XBv)XTf_v XTp).

Here the sum ranges over all permutations <r, r of the set {1, ■ • • , p}

and e(c), e(r) are the signs of the permutations a, r respectively. For

p = 2, formula (2) is the usual expression

(3) y2ix; P) = - {RiXh X2)Xh X2)

in view of the skew-symmetry of the operator A(Xi, X2) with respect

to ( , ).

We now turn to the case X — G/H considered in the theorem. As

G/H is supposed to be locally symmetric in its canonical reductive

structure, the canonical connection [5] is the Riemannian connection

of f. Let (, ): GX G—>A denote the restriction of g to G and let x0 be

the point of G/H corresponding to the unit e oi G. TXoiG/H) is identi-

fied with the orthogonal complement M oi AT in G. Then we have the

following known

Lemma. Let R be the curvature tensor of g in x0. Then for X, Y, V,

WETx,iG/H) we have

(RiX, Y)V, W) = - {[X, Y], [V, W]).

Proof. By [5, Theorem 10.3], we have in view of the preceding

remarks
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R(X, Y)V = - [[X, Y], V].

Note that [X, F]£7f, as we have supposed G/77 to be locally sym-

metric. Now (,) is invariant under the adjoint representation of 77,

so that

([[X, Y], V], W) = ([X, 7], [V, W}).

This proves the lemma.

The theorem is now a consequence of the following

Proposition. Let the situation be as above. Let PETX(I(M) be a

p-plane, p an even integer with 0<p^« = dim (G/77) and Xi, • • • , X,

(r = dim G) an orthonormal basis of G such that the first p vectors lie in

P and the last r — n vectors in H. Then the pth sectional curvature is

given by

1
7j,(x0; P) = ——-

(4) V

JI     ( JI «(°-)([^i> Xa,], Xkl) ■ ■ ■ ([X,v_„ X„v], Xkp/l)j
*1.-• -p*p/2   \     f i

where a runs through the permutations of {I, • • ■ , p}, e(o) is the sign

of a, and (ki, • • ■ , kPi2) runs through the p/2-tuples of integers ki with

r — n<ki^r for i=l, • ■ ■ , p/2.

Proof. By (2), we have in virtue of the lemma

7P(x„; P) = ——- £ e(o-h(r)([Xri, X„], [XT„ A%J) ■ ■ •
2p'2-pl .,,

'   "   ' ([X<rT-i,  Xap] [XTj)_1,  Xrv]).

We write cyafl for ([Xa, Xp], Xy), so that [Xa, X?} =XX-i <^X7 (the

c's are the structural constants of G). Using [M, M]EH and the

orthonormality of the base we obtain then

\|Xffl,  XC2\,   [XTV  JLtjJ/   = 2—1       Co\fzCTiTt
&l-=r—n+1

and similar expressions for the other terms in (5). Hence

7*(*o; P) = ——- X) «W«W (     JL    c^CrlrA • • •
2">2-pl  ,,r \ki-r-n+l /

(6) / r \

' T 2-(        c'p-i"pcTr-iTT J •
\ hpli-r-n+l /
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The zZ".r in (6) can be rewritten as

ZI   V    t \ kl kr/'   \ ( V    r \ kl *»'«     l
I    2-  «WC<rlffJ   '   •   •   C,-^, I 1    2,  eWCrir,   •   •   •   Crp-iT, I,

4^, • • • ,&j,/2=r—n-f 1   \    «, /   \    t /

or

ZZ [ZZ £WV»l  •   •   • C,*-l<r,)   •
lei, ■ ■ ■ ,kp/2=r-n+l  \    <r /

This proves the proposition.

Observe that for the usual sectional curvature 72 one obtains (di-

rectly by the lemma) the expression

yiixo; P) = i[xh x2], [xh x2])

i.e. 72(x0; P) =0 if and only if [Xlt X2] =0 (see [6]). Thus by (4) we

clearly have the implication 72 = 0=*7P = 0; for all even p with

0 <p ^ra. This is true for any Riemannian manifold [7, Theorem 6.4].

We remark that our theorem applies in particular to compact

Riemannian symmetric spaces equipped with the metric arising

naturally from a bi-invariant metric on the group of isometries.

The manifold of a compact Lie group G is with respect to a bi-

invariant metric g a Riemannian symmetric space and one can obtain

the sectional curvatures by applying the proposition. But in this

case it is simpler to observe that the (0)-connection of G [5, p. 49] is

the Riemannian connection of g. The expression A(A, Y)V =

-[[X, Y], V]/i for the curvature tensor R in e; X, Y, VEG

[5, p. 49] shows that

(RiX, Y)V, W) = - {[X, Y], [V, W])/A

By a similar computation as in the proof of the proposition, one ob-

tains for the pth sectional curvature yP on a p-rAane PEG the ex-

pression

1
yPie; P) =-

(7) V

■   zZ    (\Z <o-)i[x„v x.t], xkl) ■ • - <[*,,_„ x.X x^))1

where Xi, ■ ■ • , Xn is an orthonormal base of G, a runs through the

permutations of {l, • • • , p} and (ki, • • • , kp/2) runs now through

all ^/2-tuples of integers kt with 1 ̂ jfe.-^ra for i=l, ■ ■ • , p/2.

For an even-dimensional group it is clear that yn = 0 by the gen-

eralized Gauss-Bonnet theorem. (7) gives therefore the identity
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£ t(*)([x.v x.t], xkl) ■ ■ ■ ([x,m_u x,n], xknll) = o

valid for any orthonormal base Xi, • • • , Xn of G and any w/2-tuple

of integers ki with 1 =^i = » for i = l, • • • , n/2.

References

1. S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet theorem for closed

Riemannian manifolds, Ann. of Math. 45 (1944), 747-752.

2. -, On curvature and characteristic classes of a  Riemannian  manifold,

Abh. Math. Sem. Univ. Hamburg 20 (1956), 117-126.
3. H. Hopf and H. Samelson, Ein Satz iiber die Wirkungsraume geschlossener

Liescher Gruppen, Comment. Math. Helv. 13 (1940-1941), 240-251.
4. A.  Lichnerowicz,  Geometrie des groupes de transformations,   Dunod,  Paris,

1958.
5. K. Nomizu, Invariant affine connexions on homogeneous spaces, Amer. J. Math.

76(1954), 33-65.
6. H. Samelson, On curvature and characteristic of homogeneous spaces, Michigan

Math J. 5(1958), 13-18.
7. J. Thorpe, Sectional curvatures and characteristic classes, Ann. of Math. 80

(1964), 429-443.

University of Toronto,

Harvard University and

University of California, Berkeley


