ON SECTIONAL CURVATURES AND CHARACTERISTIC
OF HOMOGENEOUS SPACES

WERNER GREUB AND PHILLIPPE TONDEUR!

Let X be a compact orientable Riemannian manifold of even di-
mension #. The generalized Gauss-Bonnet theorem [1] states that
the Euler-Poincaré characteristic of X is

2
® x(®) == [ 30

where ¢, is the volume of the Euclidean unit #n-sphere, v, the nth
sectional curvature (see the definition (2) below) and w the volume
element of the Riemannian structure of X. It is a still open question,
whether the fact that the usual sectional curvature (second order
sectional curvature) v has a constant sign for all plane sections, has
some implications on the sign of v,. Such results would give interest-
ing applications via the generalized Gauss-Bonnet theorem. A known
result in this direction is Milnor’s theorem (see [2, Theorem 5]),
stating that for # =4 the Euler-Poincaré characteristic is positive, if
w2 is always positive or always negative.

We shall consider the class of Riemannian manifolds arising by
division of a compact Lie group G by a closed subgroup H and equip-
ment of the quotient G/H with the invariant Riemannian metric g
induced by a bi-invariant metric § on G. Consider the orthogonal
decomposition

G=HoM

with respect to g, turning G/H into a reductive homogeneous space.
We shall make the assumption that G/H is locally symmetric, i.e.
[M, M]CH. Let n=dim G/H. With these notations we shall prove
the following.

THEOREM. Let p be any even integer with 0 <p =<n. Then the pth sec-
tional curvature v, s nonnegative.

REMARK. For p=2 this was proved in [6] even without the as-
sumption of the local symmetry of G/H, and follows also at once
from the formulae in [5]. As remarked in [7], the proof of Milnor’s
result in [2] shows that y,=0 implies y4=0.
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CoroLLARY [3]. Let the situation be as before. Then the Euler-
Poincaré characteristic of G/H is nonnegative.

Proor. Without loss of generality we can assume that H is con-
nected. Hence G/H is orientable. We only have to consider the case
when the dimension # of G/H is even. Then the Gauss-Bonnet theo-
rem yields the desired result.

This answers, for the class of spaces considered, the question
raised in [6, p. 13, line 5].

REMARK. Suppose the dimension # of G/H to be even. Then by
homogeneity, the sectional curvature v, is seen to be constant [7].
Therefore x(G/H) and +., are either both positive or both zero.

We recall the definition of the sectional curvatures of a Riemannian
manifold X of (not necessarily even) dimension # (see [7]). Let p be
an even integer with 0<p=n, x&€X and PCT,(X) a p-plane at x.
Let X,, - - - ,X, be any orthonormal base of P and R the curvature
tensor at X of the Riemannian metric (, ). Then the pth sectional
curvature of the p-plane P is given by

(=p)r-2

@) Vo(x; P) = W jL:; €(0) e(1)(R(X oy, Xop) X, Xop) -
AR X apeyy Xog) Xrpsy Xoy)-
Here the sum ranges over all permutations 7, 7 of the set {1, - - -, p}

and €(0), €(7) are the signs of the permutations ¢, 7 respectively. For
p=2, formula (2) is the usual expression

3) v2(%; P) = — (R(X1, X2) X1, Xs)

in view of the skew-symmetry of the operator R(X;, X,) with respect
to (, )

We now turn to the case X =G/H considered in the theorem. As
G/H is supposed to be locally symmetric in its canonical reductive
structure, the canonical connection [5] is the Riemannian connection
of . Let (, ): GXG—R denote the restriction of g to G and let x, be
the point of G/H corresponding to the unit e of G. T,,(G/H) is identi-
fied with the orthogonal complement M of H in G. Then we have the
following known

LEMMA. Let R be the curvature tensor of g in x,. Then for X, ¥, V,
WeET.,(G/H) we have

(R(X, )V, W) = —([X, Y], [V, W]).

Proor. By [5, Theorem 10.3], we have in view of the preceding
remarks
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RX, V)V = - [[x, Y], V]

Note that [X, Y]EH, as we have supposed G/H to be locally sym-
metric. Now (, ) is invariant under the adjoint representation of H,
so that

([x, v, vl w) =[x, ¥], [v, WD)

This proves the lemma.
The theorem is now a consequence of the following

PROPOSITION. Let the situation be as above. Let PC T, (M) be a
p-plane, p an even integer with 0<p <n=dim (G/H) and X1, - - - , X,
(r=dim G) an orthonormal basis of G such that the first p vectors lie in
P and the last r —n vectors in H. Then the pth sectional curvature is
given by

7o(%0; P) = 2012 p1
(4) ,
Z ( E e(")([X‘m Xﬂz]’ Xk1> tte ([va-v va]: ka/:))
k1, ikpla A
where o runs through the permutations of {1, ceey, p}, (o) 1s the sign
of o, and (ky, -+ - -, kppe) runs through the p/2-tuples of integers k; with
r—n<k;<r fori=1,-..,p/2.

Proor. By (2), we have in virtue of the lemma

Z G(U)G(T)<[Xﬂn XUz]) [Xfu sz]) tee

o,T

vp(%o; P) =

2?/2.P[
o ([Xﬂp—v X“p] [X"p—p X‘rp]>~

We write ¢Zs for ([X., Xs], X,), so that [Xa, Xs]=D 7., %X, (the
¢'s are the structural constants of G). Using [M, M| CH and the
orthonormality of the base we obtain then

4 ky ky
<[X¢v sz]; [Xfu sz]) = Z Coy09Cryre
kyj=r—n+1
and similar expressions for the other terms in (5). Hence

Ze(v)e(f)( Z': C:inCf:fz)'

0,7 ki=r—n+1

' kpl2 kpla
s Z c’y—-l’pc"p—l"p N

kp/a=r—n+1

vp(%0; P) = 2707 pl

(6)
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The Z,,, in (6) can be rewritten as

L k kp/ k kp/
S (S ) (S e ),

kyyoeey kpl2=r—n+1 4 T

r 2
k kpl:
> (z @)y - - c.,;_z,,) .
kyy o e o ikp/2=r—n+1 4
This proves the proposition.
Observe that for the usual sectional curvature v, one obtains (di-
rectly by the lemma) the expression

72(x0; P) = <[X1) X2]: [X17 X2]>

i.e. ¥2(xo; P) =0 if and only if [X1, X,]=0 (see [6]). Thus by (4) we
clearly have the implication y;=0=+y,=0; for all even p with
0 <p =n. This is true for any Riemannian manifold [7, Theorem 6.4].

We remark that our theorem applies in particular to compact
Riemannian symmetric spaces equipped with the metric arising
naturally from a bi-invariant metric on the group of isometries.

The manifold of a compact Lie group G is with respect to a bi-
invariant metric g a Riemannian symmetric space and one can obtain
the sectional curvatures by applying the proposition. But in this
case it is simpler to observe that the (0)-connection of G [5, p. 49] is
the Riemannian connection of g. The expression R(X, Y)V=
—[[X, Y], V]/4 for the curvature tensor R in e; X, ¥, VEG
[5, p. 49] shows that

(R(X, )V, W) = — <[X’ Y]’ [V) W]>/4

By a similar computation as in the proof of the proposition, one ob-
tains for the pth sectional curvature v, on a p-plane PCG the ex-
pression

Yo(e; P) = ‘_'_23”2.1’!

E (E €("’)([X’flv X’:]; Xh) e ([X"p-v X’p]’ X"p/:))z

kyoee o ikpla '

O

where X3, - - -, X, is an orthonormal base of G, ¢ runs through the
permutations of {1, ceey, p} and (ki, - - -, kp2) runs now through
all p/2-tuples of integers k; with 1 <k;<n for i=1, - - -, p/2.

For an even-dimensional group it is clear that v,=0 by the gen-
eralized Gauss-Bonnet theorem. (7) gives therefore the identity
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Z 5(0)<[X0p Xdz]) ka) tee <[X0..—u Xvn]) an/:) =0

(4

valid for any orthonormal base X3, - - -, X, of G and any #n/2-tuple
of integers k; with 1 <k;<#n fori=1, - - -, n/2.
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