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Introduction. A function / defined on a topological space X with

values in 7 (the unit interval) is said to be of Baire class 1 provided

f~l (F) is a Gj in X whenever F is closed in 7. One easily sees that/ is

of Baire class 1 if it is the pointwise limit of a sequence of continuous

functions from X into 7, and, if X is metric, then the converse is

true [3; p. 280 et seq.].

In this paper we find necessary and sufficient conditions on a

graph G of a function/:7—>7 in order that/ be of Baire class 1. If G

is connected, we obtain the following purely topological condition:

(*) G is the intersection of a sequence of simply connected open sets.

Simple connectedness cannot be deleted here as is shown by the

example in [2 ]. In the case where the graph is not assumed connected,

condition (*) is not sufficient (see the example of §3) and an addi-

tional nontopological restriction must be placed on the open sets.

In the last section we indicate how some of our results can be ex-

tended to cover functions with more general domains.

The author wishes to thank Professor F. Burton Jones for several

helpful conversations during the preparation of this paper.

Preliminaries. We use standard notation for subintervals of 7 and

for points of I2 (the unit square); whether (x, y) denotes an open

subinterval of 7 or point of 72 will be clear from the context. The

Cartesian product notation is used where convenient; for example,

[a, b] X {c} = {(x, y) £ I2 \ a ^ x ^ b and y = c}.

For each x in 7, lx denotes the vertical interval  {x} X7.

We say that a subset U of 72 is simply connected provided U is

connected and, if 5 is a simple closed curve lying in U, then U con-

tains one of the two components of the complement of S in the plane.

The following characterization of simple connectedness in I2 follows

easily from Theorem 14, p. 171, of [4]: An open subset U of 72 is

simply connected if and only if U is connected and every component

of I2 — U meets the boundary of I2.

Unless otherwise stated, all functions will be understood to have

domain 7 and range contained in 7.
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1. A necessary condition.

Definition. An open subset U oi I2 has property C provided that

for each x in I, UC\lx is of the form {x} X(a, b). Note that a con-

nected subset of I2 having property C is simply connected.

Theorem 1. If f is of Baire class 1 then there is a sequence of open

subsets of I2, each having property C, whose intersection is the graph

Goff.

Proof. Let w and i be integers such that 0^i<n. Select a nested

sequence, { [/(ra, i, j) \j=l, 2, • • • }, of open subsets of I whose inter-

section isf~l[i/n, ii + l)/n]. For fixed ra and/ define:

UinJ) = [Uin,0,j)x[0, 2/ra)] W •

U [Uin, k, j) X Hk - l)/ra, ik + l)/ra)] W • ■ •

W[C/(ra, ra-l,i)X((ra-2)/ra,l)].

Clearly £/(«, j) is open in I2 and contains G. If (x, y) is a point of

C\"=i Uin,j) then for some integer k (Of££<ra) and infinitely many/

we have:

(*, y) E Uin, k,j) X (ik - l)/n, ik + I)/n)

(with appropriate modification for k — 0 or ra — 1). Since the Uin, k,j)

are nested, this implies that/(x) is in [k/n, (& + l)/ra]; thus \y— /(x) |

<2/ra. The last inequality implies that G = f)™=i D^.,  Uin, j).

To complete the proof of the theorem it suffices to show that for

each pair of positive integers n andj there is a sequence of open sets,

each of which contains G and has property C, such that Uin, j) con-

tains the intersection of this sequence.

Fix ra and j and suppose i is an integer with O^i^n. Let Aii)

= {xEl\fix)>i/n}r\{xEl\ix, i/n)EI2-Uin, j)} and Bii) =
{xEl\fix) <i/n}C\ {xEl\ ix, i/n) EI2- Uin,j)}; then A, and P< are
Assets in I. Let {Aii, k)\j = l, 2, ■ ■ ■ } and {Bii, k)\k = l, 2, ■ ■ ■ }

be closed subsets of / such that U^Li Aii, k) =Aii) and U™.! Bii, k)
= B0).

For O^irSn and k arbitrary the sets Aii, k)—Aii, k) X [0, i/n]

and Bii, k)=Bii, k)X[i/n, l] are closed in I2 and miss G. Let

Vk = I2-ii)ti [Aii, k)\JBii, k)])\ then Vk is open in I2, contains G,

and has property C.

It remains to show that H^.i VkEUin, j). Suppose (x, y) is in

I2— Uin,j); by the construction of Uin,j), there exist integers 5 and

Jsuch that O^s^t^n and (x, y)E{x}x[s/n, t/n]EI2-Uin,j). If

/(x)>y then fix)>t/n and there is an integer k such that (x, y)
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EB(t, k); dually, iff(x) <y then, for some k, (x, y)EA(s, k). In either

case we have (x, y)£72— Vk, for some k, and the proof is complete.

2. The connected case. We assume throughout this section that/

is a function whose graph, G, is connected.

Lemma. If U is an open, simply connected subset of I2 containing G

and F is a finite subset of I, then there is a continuous function g such

that g(x) =/(x) for each x in F and the graph of g lies in U.

Proof. Since G is connected it suffices to prove that there is y>0

such that for O^x^y there is an arc Ax with endpoints (0, /(0)),

(x, f(x)) such that AXEU and if OjSx'^x then AxC\lx> is a single

point.

Since U is open, there is e>0 such that the intersection, V, of the

e neighborhood of (0, /(0)) with I2 lies in U. Since G is connected,

there is y > 0 such that (y, f(y)) E V.

If O^x^y and (x,/(x))£ V, we let Ax be the straight line segment

from (0,/(0)) to (x,/(x)). If (x,/(x))£F, then 0<x<y and (without

loss of generality) we may assume/(x) </(0). We assert that K= {x}

X [f(x), f(0)] is contained in U. If not, then some component C of

I2—U meets K. Since U is simply connected, C also meets the

boundary of I2. Let (x, z) be a point of KC\ C. Then GW({x} X [z, 1 ])

misses G and, relative to I2, separates (0,/(0)) from one of the points

(x, f(x)), (y, f(y)). Since this contradicts connectedness of G the

assertion is proved. Since K lies in U there is w such that 0^w<x

and the straight line segment 5 from (w, f(0)) to (x, f(x)) lies in U.

We then let^x = ([0, w]X {f(0) })VJ5.

Theorem 2. 7re order that f be of Baire class 1 it is necessary and

sufficient that G be the intersection of a sequence of simply connected

open subsets of I2.

Proof. The necessity of the condition follows from Theorem 1.

Conversely, suppose G = ritli Ui where the Ut are open in I2 and

simply connected. For each positive integer n let Vn denote the com-

ponent of UiC\ ■ ■ ■ T\ UH containing the connected set G. It is easy

to verify that each Vn is simply connected. Let {(x,-, f(xA) \i= I,

2, • • ■ } be a dense subset of G. For each positive integer n there

exists, according to the lemma, a continuous function fn such that

fn(xi)=f(Xi), i=l, ■ ■ • , re, and the graph of /„ lies in Vn.

Suppose that for some x in 7, the sequence {/„(x)} does not con-

verge to/(x); we may then assume that for some e>0 and infinitely

many j,/j(x) >/(x)+e. Assume 0<x<l and denote by z the point
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(x,/(x) + «). Since fC-i Vn — G, and since the Vn are nested, there is

an integer N such that for ra^N, z is in I2— Vn. Pick a disk D such

that (x, fx))EDEVN. Pick ra, m^N such that (x„, fxn))ED

H([0, x)X/) and (*„, fixm))EDr\Hx, l]Xl). Choose J^

max(ra, rai, N) such that/r(x) >/(x)+e.

The component Cj of J2 — Uj which contains z misses the arc

{(y> fr(y)) I xn = y = xm} but meets the boundary of I2, hence Cj meets

D and, since CjEI2- Uu we have: (J2- Ui)C\D^0. But this holds

for disks D of arbitrarily small diameter, so that (x, fix) EI2— Ui.

This contradiction shows that, after all, {/n(x)} converges to/(x) for

0<x<l. We omit the corresponding one sided argument for the

case x = 0 or 1.

3. The general case. We now drop the assumption that the graph

of / is connected. Before giving the theorem for the general case we

exhibit a function not of Baire class 1 whose graph is the intersection

of a nested sequence of simply connected open sets.

Let {(riF s/) | i = 1, 2, • • • } be a sequence of pairwise disjoint open

intervals in / the complement of whose union is the Cantor ternary

set, and let E denote the collection of end-points of these intervals.

For each positive integer i, let fir/) =fis/) =1/2 — l/2i+1 and, for

x(£E, let/(x) = 1. Now/is not of Baire class 1 because/_1[0, 1/2] =E

and E is not a Gj set in I2.

Let w be a positive integer. The collection {(x,/(x)) | xEE} is dis-

crete in I2; hence, for each xEE there exists an open disk £/(x) with

center (x, fix)) and radius S(x) such that, for each j, 8(r,-) =5(s,-)

^l/2n, and if x and y are distinct points of E, then Uix)(~\Uiy) = 0.

For each j, let tj denote the midpoint of the interval (r,-, s/); let W,

denote the union of Uir/), Uis/) and the following four open rec-

tangles: [(r,-, t,)\Jith s,)}Xfir/), /(fy)+8(fy)), [(*/-*(fy), *y)W(«„

<y+8(ry))]X(f(fy), 1-1/2-+1). Next, define V„ = (lX(l-l/2-+\ l])
— ({(*%•> 1)|» = 1, • • • , n}\j{isi, l)\i=l, ■ • • ,n}) and, finally, let

Un=V„yj\J£.i Wj. It is easy to see that U„ is open in I2, simply

connected, contains the graph G oi f, and that Cl".! Un = G.

Theorem 3. In order that f be of Baire class 1, it is necessary and

sufficient that there exist a sequence of open subsets of I2, each having

property C, whose intersection is the graph G of f.

Proof. The condition is necessary by Theorem 1.

Conversely, suppose G = C\^Li Un where each Un is open and has

property C. We may assume that the Un are nested.

For each x in 7,  UnC\lx is a nondegenerate open interval in lx,
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write Unr\lx= {x} X(tn(x), un(x)). The functions un and tn defined

in this way are, respectively, lower and upper semicontinuous. By

Theorem 4 of [l], there is a continuous function/„ such that, for

for each x, tn(x) </„(x) <un(x).

Suppose there is x in 7 and e>0 such that for infinitely many/,/,(x)

>/(*)+«• Then for infinitely many j, {x} X(f(x), f(x)-f e) C Uj.

Since the Uj are nested, the inclusion holds for all/ and Cljl, Uj con-

tains {x} X(f(x), /(x)+e) which is absurd. This shows that the/„

converge to / pointwise and completes the proof.

4. Generalizations. It is possible to extend Theorems 1 and 3 to

the case of more general domains for the function involved. We shall

merely state these generalizations; their proofs, except for notation

changes, are identical with the ones we have given.

We begin by generalizing property C. Given a topological space X,

we say that an open subset U of XXI has property C-X in case

UC\lx is of the form {x} X(a, b) for each x in X. (Thus "property

C-7" is the "property C" used above.)

For convenience in what follows, we shall say that a subset G of

XXI has properly B-X if and only if G is the intersection of a se-

quence of open subsets of XX 7, each of which has property C-X.

Then the following generalization of Theorem 1 holds:

Theorem 4. If X is any topological space and f:X—>I is of Baire

class 1, then the graph of f has property B-X.

Generalizing the proof of sufficiency in Theorem 3, we have:

Theorem 5. 7/ X is normal and countably paracompact and f is a

function on X into I whose graph has property B-X then there is a

sequence of continuous functions on X into I converging pointwise to

fonX.

If X is metric, so that one has the characterization of functions of

Baire class 1 mentioned in the introduction, then the following gen-

eralization of Theorem 3 holds:

Theorem 6. A function on X into I is of Baire class 1 if and only if

its graph has property B-X.

Theorem 2 appears to be a theorem about plane topology. We

have no generalization of it in which the condition on the open sets

is purely topological; such a generalization is probably accessible via

techniques of algebraic topology.
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