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Let xn (ra = l, 2, 3, • • • ) be mutually independent random vari-

ables, identically distributed according to the symmetric stable dis-

tribution with exponent 7 (0<yg2), i.e., E[expiitxn)] =exp(— \t\y).

Let Sn= zZl-i xk. The classical "law of the iterated logarithm" (for

the simplest exposition, see Feller [2, pp. 192-195]; see also [3] and

[4]) tells us that for 7 = 2

P (lim sup-= 1) = 1.
\  »->»    V(2ra log log ra)        /

That is, the variables (l/\/ra)5„ again satisfy E[exp(t7(l/Vra)5„)]

= exp(— 11\2), and to achieve a finite lim sup they must be cut down

additionally (and multiplicatively) by the factors (2 log log ra)_1/2.

For some reason the obvious corresponding statement for the case

7 < 2 does not seem to have been recorded, and it is the purpose of this

note to do so.

For 0<7<2, the variables n~y~lSn again satisfy E[exp(^re~1'_15n)]

= exp( — I /1t). Since the corresponding distribution function Fix) has

tail behavior P(—x) + l — F(x)~(const)\x\—< as \x\—>°°, instead of

exponential decrease as in the 7 = 2 case, we can expect the "cut down

factors" to appear otherwise than as multipliers.

Theorem. For 7 < 2

P Uim sup I n-y^Sn |clog lo* n)_1 = ey~') = 1.

We sketch the proof. It suffices to show that for fixed e>0, and for

almost every sample point, we have

(1) I n-y~'Sn I   > (log ra) d+o?-1        finitely often

and

(2) I n-^Snl  > (log«)(1-<)lr_1        infinitely often.

Now the proof proceeds almost exactly as for the 7 = 2 case. Thus, to

show (1), let An be the event that \Sn\ >ra?_1(log ra)(1+e)'>'"1. Pick
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B> 1, and for r = 1, 2, 3, ■ • • , let nr denote [Br], the largest integer in

Br. Let Br denote the event that | Sn\ > (wr)T_1 (log nryi+t)^1 for some

w with wr = w<Mr+i. Then lim sup„<00 ^4„Clim supr<00 Br; and there

exists a constant c>0 independent of r such that for all r P(Br)

^cP(Cr), where Cr is the event that

(Wr+1-l)-^|5nr+1-l|     >(-—7-Y     (l0g«r)(1+')T_1.
\Wr+i — 1 /

Since the distribution for (wr+i —l)_1,_15nr+1_i has tail behavior

'~(const)|x|~T (cf. [3, pp. 181-182]), we conclude that for some

finite constant a>0, P(Cr) ^ar-(1+«), and ^p(Br) < =o. Hence by

the Borel Cantelli lemma, P(lim sup„^M An) =P(lim supr,w BT) =0,

and (1) holds.

To prove (2), set Dr = 5„r+1 — 5„r. These are independent variables,

and by the Borel Cantelli lemma again we find that for almost every

sample point,

(nr+i - nr)-^\ Dr\  = Oog^o-Wt"1

for infinitely many r. Suppose that (2) does not hold on a set of posi-

tive probability. Then for almost every sample point in that set,

| nZ'Sn^ |  £ fl - —Y   | Dr |  - (—X   | Snr I

=   (l  - —Y      (log Mr)'1-*"*"1 -  f—Y      0°g Wr)11-'^1
\ Wr+i/ \Wrfl/

for infinitely many r. But for large r the last difference in (3) domi-

nates (log wr+i)(1~<>'>'_1; so (2) does hold almost everywhere. For fur-

ther details in this paraphrase of the classical case, we refer the reader

to Feller [2], loc. cit.

Remark. By stricting n to subsequences of the form nk = [Bk } for

fixed /3>1 and 5>1, the proof shows that, with probability 1, every

point in the interval [l, eyl] is a limit point of the sequence

{«-">'~I|S„|<l01!l0e")~\ w = l, 2, 3, • • • }. Now, at least for 1<7<2,

0 is also a limit point, as one can conclude from the general results of

Chung and Fuchs (see [l, Theorem 4]). I do not know about the

points in the interval (0, 1).

Added in proof. V. Strassen has pointed out to us that the above

theorem follows simply from a result of A. Khinchine, Mat. Sb. 45

(1938); p. 582. However, the present version of the log log law holds

also if the common d. f. F of the x„ lies in that part of the domain of
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normal attraction of a nonnormal stable d.f. Gy (0<7<2) subject to

conditions of the form

ci      di c2      d2
Fi-x) = — + — + nix),   1 - Fix) = — + — + nix),

XT       xs xi       XS

where r<(x) =0(l/x') and y<5<e (and nix)+r2ix) are monotone as

x—>=° if 7<1). For under these conditions, H. Cramer has shown

(Ora asymptotic expansions for sums of independent random variables

with a limiting stable distribution, Sankhya Ser. A 25 (1963), 12-24)

that for the d.f. F„ of 5n (suitably shifted and scaled), Fnix)— G7(x)

= 0(l/w'1') uniformly in x. Hence in the above proofs, we may replace

tail estimates based on Fn by ones based on Gy with an error of at

most 0(l/ra7). But on subsequences rayC[c'], c>l, such errors will

not affect the convergence or divergence of our series, and the proofs

go through as before.
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