
SMALL EIGENVALUES OF LARGE HANKEL MATRICES

HAROLD WIDOM1 AND HERBERT WILF2

In this note we shall determine the asymptotic behavior as N—»oo

of the smallest eigenvalue of the Hankel matrix

HN = icm+n)        m, n = 0, • • • , N.

It is assumed that the cn are the moments of a distribution function

a(x) on the finite interval [a, b],

cn =  j   xndaix),

where w(x) = o/(x) satisfies

rb log wix)
I     —■-dx > — oo.

Ja    0 ~ a)U2(b ~ *)1/2

We shall see that for the smallest eigenvalue X# of Hn there is an

asymptotic formula of the form

where p and a are constants which will be explicitly determined. In

the case of the Hilbert matrix (cOT = l/(?ra-|-l)) a partial result was

obtained by Todd in [3]. (In certain exceptional cases the exponent

§ must be replaced by |.) It will be found that <r depends only on the

interval [a, b].

It will be assumed throughout that a+b ^0. This entails no loss of

generality since the Hankel matrix corresponding to the distribution

function —a( —x) on [ — b, —a] has exactly the same eigenvalues as

Hn.

Lemma 1. Let P„(x) (ra = 0, 1, • • • ) denote the orthogonal poly-

nomials associated with a(x). Then HNX is similar to the matrix whose

m, w entry is

1   rir
am.n = —        Pmieie) PnieiS)* de,       m, ra = 0, • • • , N.

2ir J 0

Proof. Write P„(x) = zZ"~o bn,iX\ Then
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/.& N

8m.n  =     I      Pm(x)Pn(x) da(x)   =     J3   bm,iCi+jb„J
J a i.1—0

and so if Kn denotes the matrix

"60,0    0        0 • • • 0     "

61,0    bi.i    0 • • • 0

b2,o    b2,i    62,2 • • • 0

-btf.O      6jV,l      bf/,2       •     •     •       bN.N-

we have I = KNHNK^. Thus HN1=KN(KNKN)(KN)-1. But the m, n

entry of KnKn is

E bm,ibn,i = — f   Pm(eie) Pn(eie)* dd,
i-o 2ir J 0

which proves the lemma.

We shall be concerned now with the asymptotic behavior of am,n

as m, w—> 00. This will turn out to be simple enough to enable us to

deduce the asymptotic behavior of the largest eigenvalue of (am,n).

Lemma 2. We have, uniformly for z bounded away from the interval

[a, b],

Pn(z)~(b- ar^'V-^fMG-),

where

2 b A- a      I"/    2 bA-a\2        H1'2
r =-z-+ (-z-)-i

b — a        b — a      \_\b — a b — 0/ J

(the square root denoting that branch which is positive for large positive

z), A (f) is analytic in | f | > 1 and

1               1             If       r   (° ~ a              bA-a\. ."I
log I A (pe**) I   =-I     log   w I-cos / 4-11 sin t \

P2- 1
-dt.
1 — 2p cos(4> — t) + p2

Proof. If a=— 1, & = 1 this is Theorem 12.1.2 of [2] if a(x) is

absolutely continuous and is Theorem 9.3 of [l] for general a. The

case of the interval [a, b] may be reduced to this by a linear change

of variable since if qn(x) are the orthogonal polynomials associated
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with the distribution function

(b — a b + a\
a I ■-x -\-)

V    2 2    /

on [ —1, 1] then

/   2 b + a\
Pnix) = qn I-x --■ 1.

\b — a b — a/

We omit the details.

In view of Lemma 2 we expect that the asymptotic behavior of

am,n depends on the maximum of | f (z) | as z runs over the unit circle.

The next lemma will describe this maximum. It is convenient at this

point to distinguish three cases:

Case 1. o>-6/(1+26).

Case 2. a = -6/(1+26).
Case 3. a< -6/(1+26).

Lemma 3. The maximum value of g(0) = | f (e'e) | is given by

f6 + o + 2      r/6 + a + 2\2        T'2
-h    I-)   — 1        Cases 1 and 2,

b — a LA   b — a    /

(    1 Y'2      /    1    X1'2
(-j—:-1- 1 )     + I -.—:— ] Cases 2 and 3.
.\|«|6        / \|o|6/

In Cases 1 and 2 the maximum occurs at d = tt iand only there mod 27r)

and in Case 3 at 6= ±60 iand only there mod 2-7r) where

b + a
cos do =-•

2ab

Moreover in Case 1 we have g"0) y^O, in Case 2 we have g"iir) =0 but

g"0) 5^0, and in Case 3 we have g"id0) 9^0.

The proof of the lemma is completely elementary and need not be

reproduced here.

Lemma 4. There is a constant A, depending only on the distribution

function a(x), such that for all m, ra

(Aim + n+ l)-i/2,rm+n   Cases 1 and 3,

| am,n |  _   \A^m + n+ lyllt(rm+n   Case 2

Proof. It follows from Lemma 2 that as long as the unit circle
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does not intersect the interval [a, b] we have

/» 2r g(e)m+n de
0

and the desired conclusions follow readily from Lemma 3 using stan-

dard techniques.

To show that the same estimates hold even if the unit circle does

intersect [a, b] let us assume that 1 belongs to the interval but —1

does not. (The case in which they both belong to the interval is more

complicated in only a trivial way.) We can write, for any e>0

1    C * 1   C 2t_<

| am,n I   g — I     I Pm(eie)Pn(e'e) \ dO + — I | P«(*")-W) \ de.
2ir J —i 2ir J t

Since the asymptotic formula of Lemma 2 holds uniformly for

e^d^2w — e, the last integral will satisfy the estimate in the state-

ment of the lemma. To estimate the first integral, denote by R, the

rectangle with vertices e±u, l±i tan e. This rectangle contains the

arc of the unit circle given by \0\ ^ e. Since the polynomial Pm(z)Pn(z)

has only real zeros (Theorem 3.3.1 of [2]) its maximum absolute

value on Rt is attained on the horizontal sides of R,. On these sides

we may apply the asymptotic formula of Lemma 2, and so

lim sup max | Pm(z)Pn(z) | ««•+») = g'e + 0(e2)).
m+n—»»        fi€

Therefore we have as ot+m—►<»

f   | Pm(e*°)Pn(eie) | de = 0(/-+")

for any t > g(e + 0(e2)). A little computation shows that g(2e)

>g(£ + 0(e2)) if e is small enough. Thus

f   | Pm(eiS)Pn(eie) | dO = 0(g(2«)-H"»).

But o->g(2e), again for sufficiently small e (recall that g(d) does not

attain its maximum <r at 6 = 0), and so certainly

f   | Pm(eie)Pn(eie) | de = o((m + n)-™*"**).

This completes the proof of the lemma.

The next lemma gives the asymptotic behavior of am,n as m, n-+ °o.

First some more notation. We write
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|4(f(-l))|V" ^^

21'V3/2|g"0)|1/2(6- a)      ^   '

3»«r(i)U(f(-l))|V/«
7 = {-i-i-    Case 2,

2»'«ir*|f"0)|1/4(6-0)

21'2] i4 (f («*•)) IV'1

£"(0o)|1/2(6-a)

where 14(f) | is given in Lemma 2 and 0O in Lemma 3. We shall write,

in Case 3,

sgnf(e«'9°) = e*'*°.

(In Cases 1 and 2, sgn f( — 1) = — 1.)

Lemma 5. The following hold as m, ra—><» with m—n bounded:

am,n ~ t(- l)m-"im + n)-inom+n Case 1,

am,n ~ t(- l)m-"(w + n)"1'V+n Case 2,

flm,n = 7 cos im — n)4>oim + ra)-1/V"+n + o((w + ra)-1/Vm+n)    Case 3.

Proof. Suppose the unit circle does not intersect [a, 6]. (The case

in which it does can be handled just as in the proof of Lemma 4.)

Then by Lemma 2,

*"■" = r^I-T f    UWm+"[sgnr(«i9)]-n| AiUe">)) |2
2^(6 — a) J o

+ oigid)m+n} dd.

In Cases 1 and 2 the maximum of g(0) occurs at d — rr (and nowhere

else) and the result follows from Lemma 3 using standard techniques.

In Case 3 the maximum occurs at ±60. Since

f0"*>) = W'))*, \Aif)\  =  | 4(f) |

the conclusion in this case also follows easily from Lemma 3.

Theorem. If \n is the smallest eigenvalue of Hn, then as N—> oo,

Xif ~ 7~ V - l)i2N)m<r~2lN+1) Case 1,

\n ~ 7~V - l)(2A)1'V-2^+1> Case 2,

r   1      / 1 Y'H"1
Xat~2t-1   -+(-) (2A)1'V-2^+1>

U2 - 1      V4 - 2<72 cos 2^.o + 1/    J

Case 3.
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Proof. We shall consider in detail only Case 3; the others are

easier. Let us write

bm.n = cos (m - n)4>odm+n,

Cm.n  =   Om.n  ~  y(2N)~ll2bm,n.

Fix No and e. It follows from Lemma 5 that if m and n are sufficiently

large, but \m—n\ —N0, we shall have

| am,n — y cos(m — n)<b0(m + n)-ll2crm+n \  = e(m + n)~ll2o-m+n.

Therefore if both m and n exceed N—N0 and N is sufficiently large

we shall have

| Cm.n |   =   \am,n - y cos(m - n)(bo(2N)~1'2o-m+n |

(2) = e(m + n)~li2o-n+n Ar yo-m+"[(2N - 2N0)112 - (2N)1'2]

g eN-ll2o-m+n.

It follows from Lemma 4 that for all m, n

(3) | cm,n |   = Ai(mA-nAr l)-1'V+»

where Ai is a constant depending only on the distribution function

a(x). Denote by jujv the eigenvalue of largest absolute value of the

matrix (cm,n) (m, « = 0, • • • , N). Then from (2) and (3) we obtain

AT N N-No     N 0.2 (m+n)

un£   Y,  cl,n = eN      £      c2^+^A-2Al  £   E -
m,n=0                             m,n=N-N, m=0     n-0   m + M +   1

€20.4(JV-I-1)                        ,,.2(2^-^0)

g-h   ̂ 2->
(a-2 - l)2N 2N - No

where A2 is another constant. If now N0 is taken sufficiently large in

comparison to e, this will imply for sufficiently large N

2e(72(AM-i>

(4) \pn\   ^-
' ' (<72   -   l)N^2

Now Lemma 1 implies that X^1 is the largest eigenvalue of (am,n)

(m, n = 0, ■ ■ • , N). It follows therefore from (1) and (4) that if vN

is the largest eigenvalue of (bm,n) (m, n = 0, • • • , N), we have

-i/2 2«r2<)v+1> _! _i/2 2e<r2<Ar+I>
(5) y(2N)      vN-= \N g y(2N)     vN +-•

(<r2 - l)N>'2 rv     ' (a2 - l)N''2

for sufficiently large N. Since the eigenvectors of (&m,„) must be

linear combinations a cos n<t>o0nArB sin n<t>oo-n it is easy to see that
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vN is the largest eigenvalue of

-     N N

zZ cos2 n<bo<r2n zZ sin n^>o cos n<t>oo-2n
rABl_o o

Lb   cl~     »  . *   .
/ J sin nd>o cos n<poo-2n    Za sin2 n<Poo-2n

_      0 0

We find that as A7—> oo

1 T    1 o-2 cos 2N<b0 - cos 2 (A + 1U01
4 = —   -+-—   o-w+v + Oil),

2 U2 - 1 <r4 - 2a2 cos 20o + 1        J

1 r     1 a2 cos 2N<p0 - cos 2(A + 1U01
C = —- '      *w+» + 0(1),

2 U2 - 1 <r4 - 2<r2 cos2 (fr, + 1        J

1 a2 sin 2A<£0 - sin 2(A + l)<b0
B =-— ff*w+« + 0(1),

2 <74 - 2<r2 COS2 0o+l

and from these there follows easily

(6)  vn = — T-+ (■-^   1 <r2(*+1) + 0(1).
2 Lo-2 - 1      \a4 - 2<r2 cos 20o + 1/    J

The theorem follows from (6) and (5) if we observe that e was arbi-

trarily small.

We regret to announce that in the case of the Hilbert matrix

(—,-—)        im,n = 0,l,---,N)
\m + ra + 1/

our result takes the form

\n ~ 29'V2(73 - 48(2)1'2)-1A1'2(3 + 2(2)1'2)-2^-3/4   (N-*«).
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