
THE UNIVALENCE OF FUNCTIONS ASYMPTOTIC TO
NONCONSTANT LOGARITHMIC MONOMIALS1

E. W. CHAMBERLAIN

Introduction. The title refers to analytic functions s(x) which be-

have like nonconstant logarithmic monomials Mix) = ex"10 (log x)mi

• • • (log, x)mr (where c is a complex number f^O, the raz,- are real, and

log.v is the A-fold iterate of the principal determination of log) in the

sense that six)/Mix)—*l as x—><» in the complex plane.

Definition. An analytic function E is said to —>0 rapidly enough

for M if £->0 and (M/M')-E'->0 as^oo.

Theorem 2 states that if s = Mil+E) where A—>0 rapidly enough

for M, then 5 is 1-1 in some neighborhood of infinity.

The neighborhood bases for oo with which we shall be concerned

are families F(a, /3) whose elements are sector-like regions Via, /J, £)

defined as follows: Let —7r^a<j3^7r. Let £(S) be a real-valued func-

tion defined and bounded below on some subinterval (0, 7) of

(0, if3-a)/2). Let Tia + 8, jS — S, £(o>'*) be the sector {z:a + d

<arg(z-£(5)e*")<j8-S}, where ju = (o!+/3)/2. Via, (3, £) is then

U { Tia + 8, f)-8, £(6V<0: 0<5<y}. The family of all such Via, [3, £>
is denoted F(a, /3). Such neighborhood bases are dealt with in the

asymptotic theory of ordinary differential equations in the complex

domain, as developed in [l] and [2]. (See [l, p. 44].)

Remark. Taking s = Mil+E) where Af(x)=logx and A(x)

= x'/log x, it is easily seen that s/M—>l over F( — t, +tt) but s is

not univalent on any member of F( — ir, +tt) (since s' = 0 infinitely

far out on the real axis); E—>0, but not rapidly enough for M in this

case.

Theorem 2 justifies a large class of changes of independent variables

in the study of differential equations. Functions /(x) (in particular,

coefficients of differential equations) can be regarded legitimately as

functions Fis), over suitable neighborhoods of 00, on the condition

that s be asymptotic to a nonconstant logarithmic monomial M in

the sense described. Changes of this type are important in the treat-

ment of linear differential operators with repeated approximate fac-

tors (cf. [3 ] where such a change is effected by the formal substitu-

tion — Wix)dx — ds).
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Theorem 1 shows that the class of substitutions effected by writing

ds= V(x)dx where V/V0-+l, V0 being a logarithmic monomial such

that J^Vo= o°, is precisely the class of substitutions s = M(lA-E),

where £—>0 rapidly enough for M and where M—*<» as x—>oo.

The principal device used in this paper is the Sharp Form of the

Generalized Mean Value Theorem, given in Lemma 1. It asserts,

roughly, that the tangent vector to a simple differentiable arc attains

parallelism (as opposed to antiparallelism) to the vector from initial

to terminal point. Consequently, a simple closed curve with no more

than two points at which the curve is not smooth has tangent vectors

whose arguments differ by ir. The crux of the univalence discussion

is that for the functions s(x) and for the domains V(a, p\ £) in ques-

tion, the images of certain paths joining arbitrary points in V(a, /3, £)

are curves on which the argument of the tangent vector is limited to

values differing by less than ic—partly because of limitations on

s'(x), partly because of the geometry of the path. Thus 5 cannot map

such a path onto a closed curve, and hence assumes two different

values at the end points.

Notation, p. will always represent one half the sum of the first two

arguments of the function T. For complex Zi, z2, (zi, z2) and [zi, z2]

will represent the open and closed line segments determined by the z,-.

Lemma 1 (Sharp Form of the Generalized Mean Value

Theorem). Let C be a simple arc given by a map z(t) = (x(t), y(t)) from

[0, l] into the complex plane which is continuous and 1-1 on [0, l]

and such that z'(t) exists and is never zero for all tE(0, 1). Then there

exists a hE(0, 1) such that arg(z'(h)) =arg(z(l) — z(0)).

Proof. We discuss the case in which arg(z(l) —z(0)) =0. No gen-

erality is lost in assuming that Cf~\[z(0), z(l)] = jz(0), z(l)}. Defining

z(0=z(l)4-(*-l)(z(0)-z(l))_for Kt-^2, we may further assume

that the simple closed curve C given by z = z{t), 0^t^2, is positively

oriented. LeUi£(0, l)\J(l, 2) be such that y(h) ^y(t) for all££[0, 2].

Clearly arg(z'(ti)) =0 or =ir. We wish to show that arg(z'(/i)) =0.

Since z'(h) is a nonzero real number, we can write C=AU(C-A)

where A is a small arc through z(tA such that AC {z: arg(z — z(h))

E [0, tt/4]U [3tt/4, tt] } \J{z(h)}. For z(t) £A, either

(a) arg(z(0 - z(h)) E [0, tt/4]    for / < h

and

arg(z(0 - z(h)) E [3tt/4, tJ    for / > lh
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or else

(b) arg(z(0) - zih)) £ [3^/4, tt]    for * < h,

and

arg(z(0 - zih)) E [0, t/4]    for I > h.

Suppose (a) is the case—i.e., suppose arg(z'(h)) =w. Let q = iX, Y)

be a point such that A = x(h), F>y(/i), and sufficiently near z(h)

that {z: arg(z — q) = — 7r/2}PiC = {zih)}. As s(0 describes C—A from

the left end point of A to the right end point of A, arg(z(0 —q) varies

from a value near x to a value near 0 (for on C—A, arg(z(0 —q) as-

sumes no value congruent to 3ir/2). As z(0 describes A from right to

left, arg(z(0 — q) varies from its value near 0 to a value congruent

to its initial value; in so doing, arg(z(0 — q) passes through a value

congruent to —ir/2 but through no value congruent to +w/2. Hence

the terminal value of arg(z(0~ q) equals its initial value minus 27r.

This contradicts the assumption that C is positively oriented. There-

fore (b) is the case—i.e., arg(z'(<i)) =0; and z(/i)£C since arg(z'(0)

= 7rfor 1<*<2.

(I am grateful to Julius S. Dwork for useful suggestions incorpo-

rated in this proof.)

Lemma 2. Let z(0 map the interval [a, b] continuously into the plane

in such a way that a^t'<t"^b, then z(i') =z(i") if and only if t'= a

and t" = b; and suppose that for some c£(o, b), z'it) exists and is never

zero on (a, e)U(c, b). Then there exist hEia, c) and t2Eic, b) such

that |arg(z'(<i))-arg(z'(/2))| =tt.

Proof. Apply Lemma 1 to the two simple arcs obtained by re-

stricting z to the intervals [a, c] and [c, b].

Lemma 3. Let E be analytic in F£F(a, (3) and let £—>0 over F(a, |3).

Let F be analytic in V and such that F/W—>1 over F(a, /3), where IF(x)

= cx_1(log x)_1 • • • (log* j;)-1+'(logt+ia:)ai • • • (logfc+r x)"r with c^Q

and t>0. Let x0£ V. Then J%EF'/ f^F^O over F(a, (3).

Proof. First we establish

Assertion A. Let Vu B be such that Fi£F(a, f3) and | £(z)| <B

for all z£ Vx. Let x(r) =rei" where m = (a+j3)/2. Let 5£(0, (|3-a)/2).

Then for all sufficiently large r there exists a positive number Sir, 8)

such that \fxxir)EF/Jxir)F\ < IB whenever |x| > Sir, 8) and

xETia+8, P-8, xir)).
Proof of Assertion A. Let A be a positive number so large that

ViDTia + 8, j3-5, x(A)), F is analytic on the closure of Tia + 8,
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(3-8, x(R)), and \ F(x)\>lT\x\-1(log \x\)-* • • • (log* |*|)-w* for
all xET(aA-o, j3 —5, x(R)). We shall show that for each r^R there

exists an S(r, 8) with the prescribed property.

Let r^R. It is easily seen that there exists a positive number

Si^x(r) such that for each <££[a4-5, /3 — 5] there exists a constant

c(4>) such that \arg(F(x)) — c(<p)\ <§ whenever |x| ^ Si and

arg(x — x(r)) =d>. Then for each x such that |x| >Si and aA-8

<arg(x — x(r)) </3 — 5, if we let {xi} = [x, x(r)]n{z: \z\ =Si} and

integrate along [xi, x], we obtain

F(t)dt\
[J XI I

=   J   I FQ) I exp[*c(tf>) 4- i arg(rf/) 4- i(arg(F(0) - c(tf>))] | dt \

£  f*\ F(t) | cos(arg(F(0 - c(<t>))) \dt\  > (7/8) f'\ F(l) \\dl\
J xi ^ xi

> (7/8)((log* \x\y'2-(logk \xi\yi2).

Let Bi be an upper bound for {J^T)\ F(t)\ \dt\ : xE{z: \z\ =Si}
r\T(aAr8, /3 — 5, x(r)), integrated over [x(r), x]}. Let S, be a positive

number so large that (log* S2)Tl2 — (logk Si)Tl2>2Bi. Then if x is any

member of T(a + 8, B — 8, x(r)) such that |x| ^52, and Xi= [x(r), x]

A{z:|z| =S}, we have

I     £F   SB[   j      \F\\dt\  +        |F||(ft| )
«^s(r) I V^xCr) *^ »1 /

-<MM<i + (/>IW)/(/VlM))

^(35/2)  f"|F||*|.

At the same time,

|     F(/) dt   g   I      | F | | <ft |  g Bi

and

f F(0*   > (7/8)  f   \F\\dt\ > (7/8)-2Bh
\J*l J xi

so
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r Fit)dt\ = r Fit)dt. i+(r xfco*)/(f fw*)
Ki(r] I ̂  ii \^x(r) / I      \J xi )\

> (7/8) ( J VI I * I ) (1 ~ ^1/((7/8)2A1)).

Hence   |/|W£F//|WF| <4B  whenever   |x|j£S(r,   5)   if   we   define

Sir,8)=S2.

Assertion B. Let Xoo^roe^E V. Then for each e>0 and each 5 in

(0, (/3 — a)/2) there exists a sector r(a + 5, j3 —5, re*") such that

|/^AF//^F| <e for every x£F(a + 5, (3-8, re'").

Proof of Assertion B. Let e>0 and 5£(0, ir3 — a)/2). Since

there exists an element of F(a, (3) in which \e\ <e/16, Assertion

A implies the existence of positive numbers r and S such that

\fxx{r)EF/JxxWF\ <e/4 for each x£F(a + 5, (3-8, x(r))n{z: \z\ >S}.

We have \JxXmEF/J*^ SNi/Na+N2/Na where N0=\fxx{r)F\

11 + Wi*f)| - Ax= |/^£F|, and A2= |/*w£F[. Let S'^S be
so large that whenever x£F' = F(a + 5, (3 — 8, xir))C\{z: \z\ >S'}

the following inequalities hold: (i) |l + (/^r)F/fxwF)| > J, (ii)

|/^£F//|WF| <e/4. Let f be so large that Tia + 8, (3-8, fe^ET'.

Then whenever x£r(a + 5, (3 — 8, re1*) we have \JlttiEF/JxXa>F\

<2(e/4)+2(e/4)=e.

Assertion B establishes Lemma 3 for x0 for the special form Xoo;

to extend the result to arbitrary x0 £ V, write fXoEF/JXoF

=f%EF/JXF+if'^EF/f%F)/{l + (f% F/J'^F)) and use this limited
form of Assertion B together with the fact that J^F—* <x>.

Theorem 1. Let Mix) = cxm°(log x)mi • • • (logr x)mr be a noncon-

stant logarithmic monomial, with m<t>0 and »ra< = 0 for i<k. Let W be

the logarithmic monomial such that M'/W—*l. Then (a) if E—»0 rapidly

enough for M, Mil+E) can be expressed as an indefinite integral:

M(x)(l+£(x)) = 7kf(xo)(l+£(x„))+/J0IF(l+E0), where £0->0; and

(b) if Eo is any analytic function which —* 0, then JX(jWil + E0)

= Mil+E) where E—>0 rapidly enough for M.

Proof, (a) We have M(x)(l + £(x)) = Af(x0)(l + A(x0))

+fx.0M'il+E + iM/M')E'); since A-^0 rapidly enough for M, it fol-

lows easily that the integrand can be expressed in the form IF(1 +E0).

(b) Wil+E0)=M'il+Ei) where JEi-»0. Therefore /*0TF(l+£o)

= Mix) [iJxXaM'/Mix)) + ifxXaEiM'/Mix))] where the first term in the

bracket obviously —»1 while the second term —>0 by Lemma 3. Thus

/^IF(l+Ao)=Af(x)(l+£(x)) with A^O. We have E' = A+B where

A = iMM'-M'JltM')/Mi  and   B = iMEiM'-M'JZtEiM')/M*.   To
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show that E—>0 rapidly enough for M, we have (M/M')A = 1

-(fxXoM'/M(x)) -»0 and (M/M')B=Ei-(fx<jEiM'/M(x)), the lat-
ter tending to 0 by Lemma 3.

Theorem 2. Let M(x) be a nonconstant logarithmic monomial, as

above, with mk the first nonzero member of (mo, • • • , mr). Let E be

analytic and let E —> 0 rapidly enough for M over F(a, B). Let

(a', B')E(a, B) and \m0(8' —a')\ ^2ir. Then M(l+E) is univalent in

some member of F(a', 8').

Proof. We shall restrict our attention to the case where mk>0,

for it is readily seen that if mk<0 then M(l-\-E) = (Mi(lA-Ei))~1

where the first nonzero exponent in Mi is positive and Ei is analytic

and Ei—*0 rapidly enough for Mi over F(a, B).

Expressing M(IA-E) as an indefinite integral as in Theorem l,we

shall prove that s(x) =JXoW(lArEo) is univalent in some member of

F(a', B'). The following cases will be discussed in detail:

Case 1. B-aSir; k>0, or k = 0 and 0<m*^l;

Case 2. B—a>ir; k>0, or k = 0 and 0<mjt^l. The remaining case,

in which k = 0 and m0>l, may be treated similarly, but the details

are more complicated. We shall omit this complicated treatment and

dispose of this case as follows: Write M(l-\-E) = [M(IA-E)]m" where

M(x)=c1'max1(\og x)miln"> ■ ■ ■ (logTx)mrlm<> and £ = (14-£)1/*"0 —1.

Restricting x, from the outset, to a member of F(a, B) in which \e\

<l and defining (H-£)1/m0 = exp((l/m0) log (l+E)) (using the prin-

cipal value of log), we have jE—>0 over F(a, 8). .£—>0 rapidly enough

for M, i.e. x£'—>0, automatically in this case, by Lemma 4. By the

validity of the present theorem in Cases 1 and 2, M(lArE) is uni-

valent in a member of F(a, 8), hence in a member of each F(a', /3').

It remains only to show that M(lArE) maps a member of each

F(a', B') into a region in which s—>zm° is univalent, and this is done

in Lemma 5.

For Cases 1 and 2 we construct an element V(a, 8, £) of F(a, 8) in

which 5 is univalent by defining the function £(5) as follows: For a

suitable subinterval (0, 7) of (0, (B—a)/2), and for each 5£(0, 7),

£(5) is chosen to be a positive number so large that for all xETs

= T(a + 6, 8-8, £(5)e*)f

I arg(x1-m»l4y(x)(l -f E0(x))) - arg(c) |   < 5/4.

(This is possible because of obvious properties of iterated logarithms

and because E0—>0 over F(a, B).) Then s is shown to be univalent

in V(a, B, £) by applying Lemma 2 as follows: For each pair Xi, x2

in V(a, B, £) we construct a map x(t), 0^ig2, by choosing a third
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point x3 in a manner depending on circumstances and defining x(0

= XiA-t(x3-Xi) for O^t^l and x(t)=xi+(t — l)(x,-Xi) for l<t^2.

We define z(/)=s(x(0), and F(h, t,) = arg(z'(h)) — arg(z'(t2)) for

(h, t2)EJXJ where J=(0, 1)W(1, 2). Then we show that | F\ <tt
on JXJ. Lemma 2 implies that z(t) maps no subinterval of [0, 2]

onto a simple closed curve, whence it follows that s(xi)^s(x2).

Since | F(h, t2) | is symmetric in ti and t2, we shall only consider

pairs (ti, t2)EJX J such that h<t2.

Notation. (1) Leti^Wo— 1.

(2) Let Fi = Fi(h, t2) =v(arg(x(h)) -arg(x(t2))).

(3) Let F2=F2(h, t2)=arg(x'(ti))-arg(x'(t2)).

(4) Let F, = F»(h, t2)=A1-A,, where Ai = arg[(x(ti))-'W(x(tt))(l

+E0(x(ti)))}-arg(c),so that F=FiA-F2+F3.

Case 1. Consider £(5) to be defined for 0<8<(B — a)/2. Let Xi and

x2£ V(a, 8, £); let Si, 52 be such that x.-GTj,., * = 1, 2.

(la) Suppose [xi, x2]ETtAJTS2. Let x3£(xi, x2). Then if h and 22

are such that {x(h), x(t2)} ETit for j= 1 or j = 2, we have | Fi| <|3—a

-25y, F2 = 0, and | F3\ <5y/2, so | F| <ir. For any other (tu t2)EJXJ

we have | F,| </3-a-51-52, F2 = 0, and | Faj <5x/4 + 52/4; thus

|F| <tt on JXJ.
(lb) In the contrary subcase we may suppose XiGTjj —Tjs while

x2ETs2—Tsv 6i>62, and arg(xi)>arg(x2). (The other possibilities

lead to similar discussions.) In this situation there exists a point

XzETi/^Tst such that arg(x3 — xi) =a4-&i and arg(x2 —x3) =«4-52.

From (la) we see that \F\ <tt on (0, 1)X(0, 1)U(1, 2)X(1, 2). For

<i<l</2 we have O^F1>(a+5,)-(B-8i), F2 = 8i-82, and | F,\

<51/44-S2/4<8i/2, so 51>5i-52^Fi-r-F2>-(/3-a)4-2Si, whence

7r>3Si/2>F>-03-a)-l-35i/2>-7r, so \f\ <tt on JXJ.
Case 2. Consider £(5) to be defined on (0,7) C(0, (B-a—ir)/2). Let

XiETSi, i=l, 2, where {5,, 52} C(0, 7).

(2a) Suppose arg(xi) =arg(x2). Take x3£(xi, x2). Then Fi = F2

= 0 and I F,\ <max(5,/2, 82/2) <ir, so | F\ <tt on JXJ.
(2b) Next suppose xi and x2 are such that [xi, x2]CT{ for some

8E(0,7) and that 0<arg(xi)— arg(x2) <ir — 8. Takex3E(xi, x2). Then

O^Fi>-tt4-5, F2 = 0, |F3| <8/2, and we have \f\ <tt on JXJ.
(2c) Next suppose xi and x2ET> and arg(xi)>arg(x2), and that

arg(xi) — arg(x2) ^ir — 8 or [xi, x2] (£7V Then Xi and x2 lie on opposite

sides of the line {re*11: — 00 <r<4- 00 }. Let x3(r) =rei" and let b(r)

= arg(x3(r) - xi) - arg(x2 - xz(r)). For r = %(8),b(r) < (B - 8 - tt)

— (aA-8)<ir — 28, while b(r)-+ir as r—>4-°°. Hence there exists an

f>£(5) such that b(f)=ic — 5. Let x3 = x3(f). Observing that arg(xi)

— arg(x3) <7r —5 and arg(x3)— arg(x2) <ir — 8, we see from (2b) that
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| F\ <tc on (0, 1)X(0, 1)W(1, 2)X(1, 2). Now consider the situation

in which h<l<t2. Here 0^Fi> -(j3-a-25)> -27T+2S, £2 = ^-5,

and | F3| <S/2. Hence | F\ <tt on JXJ.

(2d) Finally suppose xiETil — Ts2, x2ETs2—Tsl, where arg(xi)

>arg(x2), and assume 5i>6"2 with g(5i) <^(S2) to fix ideas. Let {x3}

= {z: arg(z —Xi) =/3 —5i —ir}n{z: arg(z —x2) =a+52 —x}. Let x3(r)

= rx3for r^l. Then [x^ x3(r)]CF{; whenever r^l (i=l, 2). Let 6(r)

= arg(x3(r)—X,)—arg(x2 —x3(r)). &(1) =/3 — a — Si — 52 — 7r^7r — 6i — 52,

while bir)—>w as r—►+ oo. Hence there exists anf>l such that &(f)

= 7r-(8i+52)/2. Let x3 = x3(f). From (2a)-(2c) it follows that

|F| <tt on (0, 1)X(0, 1)W(1, 2)X(1, 2). For h<Kt2 we have

0^Fi>-(i3-a-Ol-S2), Aa = 7r-(51 + o2)/2, and I F,\ <51/4 + 52/4,

whence | F\ <tt on JXJ.

Thus 5 is univalent on Via, (3, £).

Lemma 4. If E is analytic and E—>0 ozier F(a, |8), then x£'(x)—>0

wr F (a, j3).

Proof. Let e>0. For each S£(0, (/3—a)/4) let Vi be an element of

Fia, j3) such that | A(x) | <(esin(5))/2on F8. Let r(a+S,j8-5,x0) C V,,

where Xo = roei". Let T=Tia + 28, (3 — 28, x0). Then for x£F we have,

by the Cauchy integral formula,

| xE'ix) |   < }(< sin (5))( | x \ /(| x - x01 sin (5))).

Let 5= {z: |z/(z-x0)| <2}. Then |x£'(x)| <e on SC\T, and it is

clear that SC\T contains a sector F(a+25, (3-28, re1"). Let r(e, 5)

be such a sector. Then U { F(e, 5): 0 <5< (j3— a)/4} is an element of

F(a, /3) in which |x£'(x)| <e.

Lemma 5. Aef Mix) =xx(log x)"1 • • • (log,. *)nr arad Zef £(x)—>0 over

Fia, |3). Ffeera Mil+E) maps some element of Fia, (3) into the sector

Tia, (3, 0).

Proof. For each 5>0 take rs>0 to be so large that for x£F{

= F(a + S, (3-8, ue*"), |arg(x)-arg(jil(x)(l-|-£(x)))| <5. Then

Mil+E) maps UFs into Tia, /3, 0).
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