
ON FUNCTIONS THAT COMMUTE
WITH FULL FUNCTIONS

JON H. FOLKMAN1

A continuous function/ mapping the unit interval [0, l] =/ onto

itself is said to be full if I can be partitioned into a finite number of

subintervals J, such that / maps each J, homeomorphically onto I.

The number of subintervals /< will be called the number of branches

of f. H. Cohen [2] showed that two full functions which commute

(under composition) must have a common fixed point. In [l] Baxter

and Joichi investigated the question of which continuous functions

commute with full functions. The author conducted a similar in-

vestigation independently, and in this note we give some extensions

of the results in [l ]. Henceforth, it will be assumed that all functions

considered are continuous.

Following Baxter and Joichi we define a hat function to be a piece-

wise linear full function whose derivative has constant absolute value.

A full function/will be called regular if there is a homeomorphism <j>

of I onto I such that f = <f>f<f>-1 is a hat function. Baxter and Joichi

show that if g commutes with a hat function / with at least two

branches, then either g is a hat function or g is constantly equal to a

fixed point of/. From this it follows that if g commutes with a regular

full function / having two or more branches then g is either full and

regular or it is constantly equal to a fixed point of/.

An example is given in [l] of a full function with two branches

which commutes with a nonconstant, nonfull function. This shows

that the above result does not hold for irregular full functions. How-

ever, the following generalization is valid.

Theorem 1. Let f be a full function with ra2:2 branches. There is a

continuous monotone increasing function <t> mapping I onto I and a hat

function J with ra branches such that <j>f—]4>. If g commutes withf, there

is a continuous function g such that <f>g = g<fi and g commutes with J.

Furthermore, <j> is a homeomorphism if and only if f is regular.
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Combining the results of Baxter and Joichi with Cohen's theorem,

we see that if g commutes with a regular full function /, then / and g

have a common fixed point. Using Theorem 1 we obtain

Theorem 2. Let f be a full function. If g commutes withf, then f and

g have a common fixed point.

Proof of Theorem 1. For each positive integer k, let

0 = t(k, 0) < l(k, 1) < • • • < l(k, nk) = 1

be the points where /*, the &th iterate of /, assumes the values 0 and

1. Define <j> by

<p(x) = sup <— | k > 0, 0 ^ i ^ »*, l(k, i) g x> .

Clearly <j> is monotone increasing, $(0) =0 and <p(l) = 1. Since t(k, i)

= t(kArl, ni), <p(t(k, i))=i/nh. Hence, cp(I) is dense in I. But <p is

monotone so this implies that </> is continuous.

Let

Tk = {t(k,i)\ 0-gi-g.n1*}

and let T = 'UkTk. Then T is the set of points in I which are mapped

into {0, 1} by some iterate of /. Now / is onto and /({0, 1}) C {0, 1}

so/(P) =/-1(P) = P. Furthermore, if O^xgygl, then a necessary

and sufficient condition for <f>(x) to be equal to <j>(y) is that the inter-

val [x, y] contain at most one point from the set T.

Define/ by

/(*) = <pf(<p-\x)).

To show that/ is well defined we must show that <p(x) =<p(y) implies

that <bf(x) =4>f(y). Suppose not. Then there are x, y£7 such that at

most one point of T is between x and y and two points of P are be-

tween f(x) and f(y). But these two points are the images under / of

a pair of points between x and y. This is a contradiction since f~1(T)

= T.

We clearly have f4> =</>/. Let Q be a closed subset of 7. Then

J-i((2) =<£(/~V>_1 ((?))• Now/-V-1(<2) is closed and hence compact by

the continuity of / and <p. Therefore, 4>(f~l<p~l(Q)) is compact and

hence closed so / is continuous.

To show that / is a hat function with n branches, it is sufficient to

show that, for each k>0 and each i, 0^i<n, f maps the points

i/nArj/nk+1, 0^j^nk, monotonically onto the points l/nk, 0glg«*.

This follows from
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j
<t>itik,j)) = — if/is increasing on [/(l, i), til, i + 1)],

ra*

ra* — j .
4>itik, ra* — j)) =- if/is decreasing on [/(l, j), <(1, i + 1)J.

ra*

Now suppose that g commutes with /. By the above argument, to

show the existence of a continuous £ satisfying <j>g = gd> it suffices to

show that<£(x) =<piy) implies<£g(x) =4>giy).

Suppose not. Then for some x, yEI with x<y, <t>ix) =<f>iy) and

4>gix)^4>giy)- If there is a point tET with x</<y, it is the only ele-

ment of T in [x, y]. Now </>(x) =0(0 =4>{y) but either <Ag(x) ^0g(O
or <£g(/) ?^<pgiy). Replacing [x, y] by either [x, t] or [<, y], we may as-

sume that there is no element tET with x<t<y. Hence/* is mono-

tone on [x, y] for every k.

Since <f>gix)^cj>giy), for k sufficiently large there are an arbitrarily

large number of consecutive points from A* between g(x) and giy).

Hence, for any r there is a k and a monotone sequence xi, • • ■ , xr of

points between gix) and giy) such that /* alternately assumes the

values 0 and 1 on this sequence. The sequence xi, • • • , x, is the image

under g of a monotone sequence yi, • • • , y, of points in [x, y]. To see

this, let a, bEI- Now g([a, b]) is a closed interval containing g(a) and

g(&). Hence, if c is between g(a) and gib), then c is the image under g

of a point between a and b. Since Xi and xr are between g(x) and g(y),

there are points yi and yr between x and y with g(y,) = x, and g(yr) = xr.

Now x2 is between Xi = g(yi) and xr = g(yr), so there is a point y2 be-

tween yi and yr with g(y2) =x2. Continuing in this fashion, we con-

struct a sequence of points y\, • • • , yr in [x, y] with g(y<) =xt and y<

between y,_i and yr for Ki<r. This is the required monotone se-

quence.

The function/*g = g/* alternately assumes the values 0 and 1 on the

sequence yi, • • • , yr. Since/* is monotone on [x, y], the sequence

fiyi), • • ' , fijr) is monotone and g alternately assumes the values

0 and 1 on this sequence. But r may be arbitrarily large, so this con-

tradicts the continuity of g.

Since <f> is onto, to show that fg = gf it suffices to show that Jg<j>

= gf<p. This follows from the relations f<b=<bf, g<b=<bg and fg = gf.
To see the final remark, observe that if <p is a homeomorphism then
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</>/</>_1 =7 so / is regular. Conversely, if / is regular then the set T is

dense in [0, 1]. This implies that cp is 1-1 and hence a homeomor-

phism.

Before proceeding to the proof of Theorem 2, we need a

Lemma. Let f and g be continuous functions from [a, b] to [a, b]

which commute. Iffis monotone then f and g have a common fixed point.

Proof. If/ is decreasing it has a unique fixed point x0. Now/g(x0)

= gf(xo) =g(xo) so g(x0) =x0. If / is increasing, let x0 be a fixed point

of g. The sequence {x„} defined by xn =/(x„_i) for n > 0 is monotone,

so it has a limit which is a common fixed point of / and g.

Proof of Theorem 2. If / has only one branch, then / is monotone

and the conclusion follows from the lemma. If / has more than one

branch then the hypotheses of Theorem 1 are satisfied. By [l] and

[2],/and I have a common fixed point x0. Let [a, b}=<p~1(xQ). Then

$f([a,b]) = f<p([a,b])= /(x0) = x0, so f([a,b\) E [a, b]. Similarly,
g([a,b])E[a,b].

Suppose/ is not monotone on [a, b]. Then there is a tET1 with

a<t<b. Now f(t) E [a, b] and/(/) £ T, but [a, b] contains at most one

point from P, so f(t) =t. However,/(/) is either 0 or 1 and neither of

these points are in the interior of [a, b]. Hence, / is monotone on

[a, b]. By the lemma,/and g have a common fixed point in [a, b].
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