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REGULAR BOUNDARY POINTS IN MARKOV CHAINS

A. W. KNAPP1

1. Introduction. In classical potential theory [4], a boundary point

p of a bounded domain D in Euclidean space is called regular if there

is a continuous superharmonic function h S;0 defined in D which tends

to zero at p and which has a strictly positive lower bound outside any

neighborhood of p. The tip of a Lebesgue spine is an example of a

point which is not regular. The theorem is that the Dirichlet problem

for D is solvable for continuous boundary values if and only if every

point of the boundary is regular. Moreover, the natural candidate for

a solution approaches the given boundary values at every regular

point.

The question arises as to the nature of the set of regular boundary

points of a domain. It is known [2, p. 225] that this set is not empty

and, in fact, that its complement in the boundary has exterior capac-

ity zero.

The same question can be and has been asked for Markov chains.

If P is the transition matrix of a transient Markov chain, then a

function (column vector) h is harmonic if it has the mean value prop-

erty h = Ph, superharmonic if h^Ph. Doob [l] and Hunt [3] have

developed a Martin boundary theory for such a chain, and they

showed that, in terms of the space they construct, there is the usual

sort of Poisson-integral representation theorem for the integrable

nonnegative superharmonic functions. In this framework we ask two

questions: Is the set of regular points a Borel set? Is the set neces-
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sarily nonempty? The answers are yes to the first and no to the

second.

2. Notation and boundary theory. We use the notation of [5]. P is

the transition matrix for a countable-state discrete-time Markov

chain with only transient states and with starting vector iv, state

space 5, and measure Pr*. We do not assume that P has row sums

one. We let Pri be the measure for the process when it is replaced by

a unit mass at i, and we let N= zZn-o Pn- We shall assume that tvN

is strictly positive.

The Martin boundary for (t, P) is constructed as follows. If

K(i  ■) =   N(i'j)
i*N)ii)'

then a metric p is defined on 5 by

P(j,f) = £ Wii*N)ii) | KiiJ) - Kii,f) | ,
i

where the weights Wi are positive weights with zZwiNii, i) < °° • The

Cauchy completion of 5 is a compact metric space 5*, and A(i, •)

and pi-, •) extend to be continuous on 5* and S*XS*. A sequence

{x„} converges to x in S* if and only if lim A(t, x„) = A(i, x) for every

i. The set 5* —5 is the Martin boundary. On almost every sample

path co either the path terminates in finite time at a state x„(co) or

the states on the path converge in 5* to a limit xr(co).

The Borel probability measure p. defined on 5* by p (A) = Pr* [xv E E ]

is called harmonic measure. It satisfies

Pri[x„ E E] =   I   A(», x) dpix).
J s*

Every superharmonic function h^O with wh<<*> has a represen-

tation

h =   \   Ki-, x)dphix)

for a Borel measure ph on 5*. This correspondence is one-one onto if

p,h assigns no mass to the set of "nonextreme" boundary points. We

shall write h = PIidph).

3. Regular points. The first theorem is well known, but we give a

proof for lack of a reference.
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Theorem 1. If p is in S*, then these three statements are equivalent:

(1) If h^O is any it-integrable harmonic function whose represent-

ing measure is absolutely continuous [p] with density f continuous at p,

then h converges to the "boundary value" f(p) at p.

(2) If h^O is any ir-integrable harmonic function whose representing

measure is absolutely continuous [p] with a continuous density f, then

h converges to the "boundary value" f(p) at p.

(3) If U is any open neighborhood of p, then

lim Pry[x, £ S* - U] = 0.
y-^>

Proof. (1)=>(2). A fortiori.

(2) => (3). Let p(x, p) ^ c > 0 for x in S* - U, and put

h = c~1fK(-, x)p(x, p)dp(x). Then as/—»p,

0 =: Pry[x„ £ S* - U] =   f      K(j, x) dp(x)
J s*-u

Zc-1 \       K(j, x)p(x, p) dp(x) Z hj -+ 0.
J S*-U

(3)=>(1). If h = PI(fdp) and if «>0 is given, choose Usmall enough

so that |/(x) -f(p) | g€ on U. Then

I h(j) -f(p) |  =■   f K(j,x) |/(x) -f(p) | dp(x) =  f + f
J S» •/ U        " S*—U

= e + 2||/||Pry[x,£S*-<7].

For j in a sufficiently small neighborhood of p, the last term is <e

by (3).
We take the equivalent conditions (1), (2), and (3) as a definition

of regular point.

Theorem 2. The set of regular points is a Borel set.

Proof. Fix a real-valued continuous function / on S*, and let

h = PI(f dp). Define h* and h* to be functions on 5* —5 with

h*(x) = lim sup h(j)    and    h*(x) = lim inf h(j).
J-*x,)€S )->x,]e.S

Then h* and h# are semicontinuous and hence Borel measurable. The

set R/ of points p in 5* where h(j)—*f(p) as/—>p is the union of some

(necessarily countable) subset of S and the set of those p in S* — S

at which the three measurable functions/, h*, and h* are equal. Hence

Rf is a Borel set.
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Now choose a countable dense set of continuous functions on 5*,

and let R be the intersection of the corresponding sets A/. A is a

Borel set and we claim it is just the set of regular points. In fact,

R contains the regular points by (2). In the reverse direction let p

be in R, let/ be continuous on 5*, and let fe = P/(/dp). Choose a se-

quence {/„} from the countable dense set converging uniformly to

/, and let hn = Plif dp). Then {hn} converges uniformly to h, and

a 3e argument shows that limy<3, Hj) =f(P)- Hence p is regular.

If harmonic measure p assigns all its weight to one point, then that

point is a regular point and no other point of 5* is regular. Thus in

this case it is trivial that almost every point is regular. On the other

hand, it is easy to give an example of a chain in which the set of regu-

lar points is empty; practically any finite transient chain will do. Yet

such a chain is an unfair example because regular points are interest-

ing only when harmonic measure is completely on the boundary, as it

is in the classical theory. For Markov chains this is the situation in

which P is stochastic, i.e., P has row sums equal to one.

Theorem 3. There exists a stochastic transient chain in which all

pairs of states communicate, every one-point set of S is open in S*, the

boundary contains just two points (both of them extreme), and the set of

regular points is empty.

Proof. Let the state space consist of one full set of integers (writ-

ten without prime marks) together with one set of integers with zero

omitted (written with primes). The reader is asked to visualize the

states arranged in the form of a cross X with infinite horizontal rays

extending from each of the four points of the X. Along either primed

ray the process marches deterministically one step at a time toward

0, and from 1' and (—1)' it moves to 0 on the next step. From state

0 it moves to states 1 and — 1 with probabilities pi and p~i, respec-

tively, and it stays at 0 with probability 1—pi — p-i. From any state

on the unprimed rays it moves with probability pt to the next un-

primed state i that is farther away from 0; also from the given state

the process moves with probability q, = l —pi to the same numbered

state on the unprimed rays (either (* + l)' or (/ — 1)').

All pairs of states communicate if the p's and g's are chosen to be

nonvanishing, and we can take the starting vector i to be a unit

mass at 0. If i is on the unprimed axis, we define /3,- by

fio = 1,    Pi = pipi ■ • • pi if i > 0,   $i = p-ip-2 ■ ■ ■ pi if * < 0.

Put
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fto =    lim   ffi    and    B-«> =    lim   Bi-
<—»+ « i—»— 00

The process is transient if either one of 8^ and /3_M is strictly positive.

We shall assume that the p's are chosen so that both B„ and B_x are

strictly positive.

We claim the sequences {l, 1', 2, 2', 3, • • ■ } and { — 1, ( — 1)',

— 2, ( — 2)', • • • } are Cauchy. By symmetry it suffices to show that

the first sequence is Cauchy. If 77;y denotes the hitting probability

from i to j, we have

K(0,j) = 1,       j arbitrary (primed or unprimed)

N(i, j)      Ha Ha 1 (i unprimed > 0
K(i, j) = -= -= -= —- > <

N(0,j)      Hoj      HoiHij      H0i (j arbitrary beyond i

Hij      HioHoj Li unprimed < 0
K(i, j) = —- =-= 77,o,        ■{

770y 770y \j arbitrary > 0

HioHoj (i primed
K(i,j) =- = 77,o = 1,        \

770y (./ farther from 0 than i.

Thus the first sequence is Cauchy.

The fact that two Cauchy sequences exhaust 5 except for finitely

many states implies that the limits of these sequences in S* are the

only limit points in S*. If we denote the limits by + oo and — °°, we

have

A/Hot if i is unprimed and ^ 0

K(i, + oo) =    Hio if i is unprimed and < 0

1 if i is primed

l/Hoi if i is unprimed and ^ 0

K(i, — oo) =    H^ if i is unprimed and > 0

1 if i is primed.

It is readily verified that

{(Bi — 8a)/Bi      if i is unprimed and > 0
H{o =  s

{(Bi — B-«,)/@i   if i is unprimed and < 0

(0i/(8i + B-x)    if i is unprimed and > 0
Hoi —   \

\@i/(Bi + Ba)      if i is unprimed and < 0.

From these equations we see that K(-, +oo) and K(-, — oo) are

harmonic and linearly independent. It follows that + oo and — «> are
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extreme boundary points and that every one-point set of 5 is open.

Harmonic measure p, satisfies

ni+ °°) =->0    and   /*(-»)=-> 0.
/J. + jS— iSM + /3-oo

It is trivial that no point of 5 is a regular point. To see that + 00

is not regular, let U be any neighborhood of + «> which does not con-

tain — 00. Then

Pr,[x, ES* - U]=  f      Kii, x) dpix) = K(i, - <=o)M(- 00).
•I s*-u

As i tends to + » through primed states, the right side is bounded

away from zero. Hence + «> is not regular. Similarly — » is not

regular.
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