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The purpose of this note is to improve the results obtained in [2]

by relaxing the assumptions on the processes under consideration.

Thus we impose weaker topological structure on the states space and,

what is more important, the continuity of P(x, A), when A is open,

is not assumed.

1. Notation. We shall use the notation of [l] for topological and

measure theoretic concepts.

Let A be a normal topological space. Let P(x, A) be the transition

probabilities of a Markov Process:

1.1. For a fixed xEX the set function Pix,-) is a measure, on the

Borel sets, of total measure one.

1.2. For a fixed Borel set A, the function Pi-, A) is Borel measurable.

By a measure we shall mean a countably additive positive measure,

unless otherwise stated. Let us denote by r b a the set of regular

bounded finitely additive signed measures on X and by rca those

elements of r b a which are countably additive. The transition

probabilities induce an operator on the bounded measurable func-

tions by

1.3. (P/)(x)=//(y)P(x,dy).
Also if p. is a bounded finitely additive signed measure one defines

1.4. ip,P)iA)=JPix,A)pidx).
It is well known that

1.5. fiPf)ix)pidx) =ffix)ipP)idx)
and that pP is countably additive if p. is.

Throughout the paper we assume:

1.6. IffECiX) then PfECiX), where C(A) denotes the continu-
ous functions. Also:

1.7. If pEr c a then pPEi c a.
These two conditions are always satisfied under the assumptions of

[2]: under the assumptions of [2] every countably additive measure

is regular. Another example is given by (P/)(x) =/(#(x)) where </> is a

homeomorphism of X onto X.
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2. Invariant measures. Let P* be the adjoint operators of P on

C(X). Thus by Theorem IV.6.2 of [l] P* is defined on r b a and

from 1.5 and 1.7 follows that:

2.1. If pEr c a then P*p=pP.
Let p be a positive finitely additive measure. Then p = piA-p2 where

pi is countably additive and p2 is purely finitely additive i.e.: if

M2=X^0 and X is countably additive then X = 0. Also jui^O, ju2 = 0.

This decomposition and its uniqueness are proved in [3, p. 52],

Clearly if p is regular so are jui and p2.

Lemma 1. Let pEth a and p^O. If P*p=p then P*pi=pi.

Proof. Since^i+/x2 = P*Mi+P*M2and P*mi is countably additive it

follows thatpi^P*pi: let P*p2 = <TiA-o; where ci is countably additive

and <r2 purely finitely additive then pi = P*piA-ci. But

Pi(X) = f dpi = f Pldpi = (P*pi)(X),

where 1 is the function identically to one and by 1.1 Pl = l. Thus

0^(pi-P*pi)(A)^(pi-P*pi)(X) =0.
For any 0^ii£r b a put

p A- P*p + • • • + P*n-lp

(2 .2) pn—-  •
n

Theorem 1. Let A be a fixed compact set. Then either

(a) for every 0 ^pEi h a lim pn(A) =0, or

(b) there exists a measure 0 ^/x£r c a with p=pP and p(A)9*0.

Proof. Let 0^ju£rca be such that pni(A)^8>0 for a subse-

quence, nu of the integers. Let p be a weak star limit of pni. Clearly

P*p = p. If B is any open set containing A letfE C(X) satisfy 0 ^/±S 1,

f(X-B)=0,f(A) = l. Then

p(B) ̂ f fdp =lim f fdpni ^ 5.

Since the measure p is regular also p(A) 3^5. Finally let p=piA-p2

be the decomposition of Lemma 1. The theorem will be proved if we

show that p2(A) =0 since then pi will satisfy (b). But the restriction

of p2 to A is countably additive, by Theorem III.5.13 of [l ] and thus

is zero.

Given an invariant measure 0^ju£rca if ffdp = 0 where OS

EC(X), then JPfdp = 0 too, hence J(Y^-i Pnf)dp = 0. If P is such
that whenever 0 fsfEC(X) and f9*0^Pnf>0 then p never vanishes
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on open sets, or the kernel of p. is all of X.

Let Kip.) be the kernel of O^juEr c a i.e.: if x£A(ju) and A is a

neighborhood of x then piN) 7*0.

Theorem 2. Let OgpEt c a be invariant. Then

(2.3) P"ix, Kip)) = 1,       xEA(M),       ra=l, 2, •■•.

Proof. Let us show (2.3) for »=1. Take a fixed xEKip)- The

measure P(x, •)=5IP is regular by 1.7. Thus it is enough to show

that if A is a closed set disj oint to A ip) then P (x, A) = 0. Let /E G(A)

be such that 0g/gl,/(A(ju))=0 and/(^) = 1. Then

0 = J/o>= f iPf)dp.

Thus P/=0 a.e. and since P/ is continuous and xEA(ju) (P/)(x) =0.

Finally P(x, ,4) g (P/)(x) since/(^) = 1.

Following [2] let us define:

Definition. A set A EX is called self-contained if Pix, A) = 1

for all xE^4-
Also put for a self contained set A

00

(2.4) An = {x:Pnix, A) > 0},       A* = U An - A.
n-l

Then if p, is an invariant measure

(2.5) piA*) = 0

and also if A is self contained so is X—A* — A.

These facts are proved in Theorem 4 and Lemma 5 of [2], respec-

tively, and the proof is valid in our case too.

It should be noted that even when A is closed A\JA* does not

have to be open: consider the identity transformation. Thus we can

not continue to prove results obtained in Theorem 6 and 7 of [2].

Clearly the proof of Theorem 9 fails in our case.
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