EXISTENCE OF INVARIANT MEASURES FOR MARKOV PROCESSES. II¹

S. R. FOGUEL

The purpose of this note is to improve the results obtained in [2] by relaxing the assumptions on the processes under consideration. Thus we impose weaker topological structure on the states space and, what is more important, the continuity of P(x, A), when A is open, is **not** assumed.

1. Notation. We shall use the notation of [1] for topological and measure theoretic concepts.

Let X be a normal topological space. Let P(x, A) be the transition probabilities of a Markov Process:

- 1.1. For a fixed $x \in X$ the set function $P(x, \cdot)$ is a measure, on the Borel sets, of total measure one.
- Borel sets, of total measure one.

 1.2. For a fixed Borel set A, the function $P(\cdot, A)$ is Borel measurable.

By a measure we shall mean a countably additive positive measure, unless otherwise stated. Let us denote by $\mathbf{r} \, \mathbf{b} \, \mathbf{a}$ the set of regular bounded finitely additive signed measures on X and by $\mathbf{r} \, \mathbf{c} \, \mathbf{a}$ those elements of $\mathbf{r} \, \mathbf{b} \, \mathbf{a}$ which are countably additive. The transition probabilities induce an operator on the bounded measurable functions by

1.3. $(Pf)(x) = \int f(y)P(x, dy)$.

Also if μ is a bounded finitely additive signed measure one defines

1.4. $(\mu P)(A) = \int P(x, A)\mu(dx)$.

It is well known that

1.5. $\int (Pf)(x)\mu(dx) = \int f(x)(\mu P)(dx)$ and that μP is countably additive if μ is.

Throughout the paper we assume:

- 1.6. If $f \in C(X)$ then $Pf \in C(X)$, where C(X) denotes the continuous functions. Also:
 - 1.7. If $\mu \in \mathbf{r}$ c a then $\mu P \in \mathbf{r}$ c a.

These two conditions are always satisfied under the assumptions of [2]: under the assumptions of [2] every countably additive measure is regular. Another example is given by $(Pf)(x) = f(\phi(x))$ where ϕ is a homeomorphism of X onto X.

Received by the editors May 16, 1965

¹ The research reported in this document has been sponsored in part by the Air Force Office of Scientific Research, under Grant AF EOAR 65-27 through the European Office of Aerospace Research (OAR) United States Air Force.

- 2. Invariant measures. Let P^* be the adjoint operators of P on C(X). Thus by Theorem IV.6.2 of [1] P^* is defined on \mathbf{r} b \mathbf{a} and from 1.5 and 1.7 follows that:
 - 2.1. If $\mu \in \mathbf{r}$ c a then $P^*\mu = \mu P$.

Let μ be a positive finitely additive measure. Then $\mu = \mu_1 + \mu_2$ where μ_1 is countably additive and μ_2 is purely finitely additive i.e.: if $\mu_2 \ge \lambda \ge 0$ and λ is countably additive then $\lambda = 0$. Also $\mu_1 \ge 0$, $\mu_2 \ge 0$. This decomposition and its uniqueness are proved in [3, p. 52]. Clearly if μ is regular so are μ_1 and μ_2 .

LEMMA 1. Let $\mu \in \mathbf{r}$ b a and $\mu \geq 0$. If $P^*\mu = \mu$ then $P^*\mu_1 = \mu_1$.

PROOF. Since $\mu_1 + \mu_2 = P^*\mu_1 + P^*\mu_2$ and $P^*\mu_1$ is countably additive it follows that $\mu_1 \ge P^*\mu_1$: let $P^*\mu_2 = \sigma_1 + \sigma_2$ where σ_1 is countably additive and σ_2 purely finitely additive then $\mu_1 = P^*\mu_1 + \sigma_1$. But

$$\mu_1(X) = \int d\mu_1 = \int P1d\mu_1 = (P^*\mu_1)(X),$$

where 1 is the function identically to one and by 1.1 P1=1. Thus $0 \le (\mu_1 - P^* \mu_1)(A) \le (\mu_1 - P^* \mu_1)(X) = 0$.

For any $0 \le \mu \in \mathbf{r}$ b a put

(2.2)
$$\mu_n = \frac{\mu + P^*\mu + \cdots + P^{*n-1}\mu}{n}.$$

THEOREM 1. Let A be a fixed compact set. Then either

- (a) for every $0 \le \mu \in \mathbf{r}$ b a $\lim \mu_n(A) = 0$, or
- (b) there exists a measure $0 \le \mu \in \mathbf{r} \ \mathbf{c} \ \mathbf{a}$ with $\mu = \mu P$ and $\mu(A) \ne 0$.

PROOF. Let $0 \le \mu \in \mathbf{r}$ c a be such that $\mu_{n_i}(A) \ge \delta > 0$ for a subsequence, n_i , of the integers. Let μ be a weak star limit of μ_{n_i} . Clearly $P^*\mu = \mu$. If B is any open set containing A let $f \in C(X)$ satisfy $0 \le f \le 1$, f(X-B)=0, f(A)=1. Then

$$\mu(B) \ge \int f d\mu = \lim \int f d\mu_{n_i} \ge \delta.$$

Since the measure μ is regular also $\mu(A) \ge \delta$. Finally let $\mu = \mu_1 + \mu_2$ be the decomposition of Lemma 1. The theorem will be proved if we show that $\mu_2(A) = 0$ since then μ_1 will satisfy (b). But the restriction of μ_2 to A is countably additive, by Theorem III.5.13 of [1] and thus is zero.

Given an invariant measure $0 \le \mu \in \mathbf{r}$ **c a** if $\int f d\mu = 0$ where $0 \le E(X)$, then $\int P f d\mu = 0$ too, hence $\int (\sum_{n=1}^{\infty} P^n f) d\mu = 0$. If P is such that whenever $0 \le f \in C(X)$ and $f \ne 0 \sum_{n=1}^{\infty} P^n f > 0$ then μ never vanishes

on open sets, or the kernel of μ is all of X.

Let $K(\mu)$ be the kernel of $0 \le \mu \in \mathbf{r}$ c a i.e.: if $x \in K(\mu)$ and N is a neighborhood of x then $\mu(N) \ne 0$.

THEOREM 2. Let $0 \le \mu \in \mathbf{r}$ c a be invariant. Then

$$(2.3) P^{n}(x, K(\mu)) = 1, x \in K(\mu), n = 1, 2, \cdots.$$

PROOF. Let us show (2.3) for n=1. Take a fixed $x \in K(\mu)$. The measure $P(x, \cdot) = \delta_x P$ is regular by 1.7. Thus it is enough to show that if A is a closed set disjoint to $K(\mu)$ then P(x, A) = 0. Let $f \in C(X)$ be such that $0 \le f \le 1$, $f(K(\mu)) = 0$ and f(A) = 1. Then

$$0 = \int f d\mu = \int (Pf) d\mu.$$

Thus Pf = 0 a.e. and since Pf is continuous and $x \in K(\mu)$ (Pf)(x) = 0. Finally $P(x, A) \leq (Pf)(x)$ since f(A) = 1.

Following [2] let us define:

DEFINITION. A set $A \subset X$ is called self-contained if P(x, A) = 1 for all $x \in A$.

Also put for a self contained set A

$$(2.4) A^n = \{x: P^n(x, A) > 0\}, A^* = \bigcup_{n=1}^{\infty} A^n - A.$$

Then if μ is an invariant measure

$$\mu(A^*) = 0$$

and also if A is self contained so is $X-A^*-A$.

These facts are proved in Theorem 4 and Lemma 5 of [2], respectively, and the proof is valid in our case too.

It should be noted that even when A is closed $A \cup A^*$ does not have to be open: consider the identity transformation. Thus we can not continue to prove results obtained in Theorem 6 and 7 of [2]. Clearly the proof of Theorem 9 fails in our case.

BIBLIOGRAPHY

- 1. N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York, 1958.
- 2. S. R. Foguel, Existence of invariant measures for Markov processes, Proc. Amer. Math. Soc. 13 (1962), 833-838.
- 3. K. Yosida and E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46-66.

Northwestern University