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GEORGIA STATE COLLEGE

AN ADDITION TO ADO’S THEOREM!
G. HOCHSCHILD

The main purpose of this note is to point out the following strength-
ened (with respect to the nilpotency property) form of the theorem
on the existence of a faithful finite-dimensional representation of a
finite-dimensional Lie algebra.

THEOREM 1. Let L be a finite-dimensional Lie algebra over an arbi-
trary field, and let o denote the adjoint representation of L. There exists
a faithful finite-dimensional representation p of L such that p(x) s
nilpotent for every element x of L for which a(x) is nilpotent.

For the suggestion that this nilpotency property of p might be
secured I am indebted to Leonard Ross who used the characteristic 0
case of Theorem 1 in his proof of Ado’s Theorem for graded Lie alge-
bras (Thesis, Cohomology of graded lie algebras, University of Cali-
fornia, Berkeley, 1964).

In the case of characteristic 0, it is known that there exists a faith-
ful finite-dimensional representation of L whose restriction to the
maximum nilpotent ideal of L is nilpotent [1, pp. 202-203]. Hence,
in order to establish Theorem 1 in the case of characteristic 0, it
suffices to make the following observation:

Let L be a finite-dimensional Lie algebra over a field of characteristic
0, and let M be a finite-dimensional L-module on which the maximum
nilpotent ideal N of L is nilpotent. Let x be an element of L whose adjoint
image a(x) is nilpotent. Then x is nilpotent on M.

Proor. Write L=S+R, where R is the radical of L and S is a
semisimple subalgebra of L. Accordingly, write x=s-+r, with s in
S and 7 in R. Since a(x) is nilpotent, it is clear that the adjoint
representation of S sends s onto a nilpotent derivation of S. Since S
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is semisimple, it follows from (the easy part of) [1, Chapter III,
Theorem 17] that there is an element ¢ in S such that [s, ¢]=s. Now
regard L as a module for the solvable Lie algebra spanned by s and ¢,
via the adjoint representation. By Lie's Theorem, the commutator
subalgebra of this solvable Lie algebra is nilpotent on L, which means
that «(s) is nilpotent. Since N and s are nilpotenton L and [s, N]CN,
it follows by a familiar elementary argument that the Lie algebra
spanned by s and N is still nilpotent on L. Since [x, s]=[r, s]EN,
we may apply the same argument again to conclude that the Lie
algebra spanned by x, s and N is nilpotent on L. Hence 7 is nilpotent
on L. Since r belongs to the radical of L, this gives r&EN.

Our above argument for showing that a(s) is nilpotent applies
also to show that s is nilpotent on M. Now s and N are nilpotent on
M, and it follows as above that the Lie algebra spanned by s and N
is nilpotent on M. Since this Lie algebra contains s+ =x, this proves
that x is nilpotent on M.

In order to prove Theorem 1 in the case of nonzero characteristic,
we must establish the following result concerning the center of the
universal enveloping algebra of L.

THEOREM 2. Let L be a finite-dimensional Lie algebra over the field
F of nonzero characteristic p, and let U denote the universal enveloping
algebra of L. Let C denote the center of LU. Then N, UC"=(0).

Proor. It is well known that U is left Noetherian [1, Chapter V,
Theorem 6]. Thus the ideal UC has a finite ideal basis, whence it is

clear that there is a finite subset (¢, - - -, ¢x) of C such that UC
=Uc¢+ - - - + Ucr. We may take this subset such that it contains
a nontrivial p-polynomial x*+a;x?* '+ - - - +a.x, with each a; in

F, corresponding to each element x of a chosen basis of L; see [1,
Chapter VI, Lemma 5]. Let R denote the subring of U that is gen-
erated by F and (¢, - - -, ¢). Then R is a Noetherian commutative
ring, and U is finitely generated as an R-module, because of the
presence of the above p-polynomials among the ¢;’s (see [1, Chapter
V, Lemma 4]).

Let J be the ideal of R that is generated by (¢, - - -, ¢&). Since U
has no nonzero divisors of 0 and JCLU, it is clear that (147)u=0
for every j in J and every nonzero « in U. Hence it follows from the
well-known generalized form of Krull's Theorem [2, p. 253] that
Ne, J*U=(0). Now UCr=(UC)"=(JU)»=J"U, so that Theorem 2
is proved.

In particular, there exists an exponent #z such that (UC")ML = (0).
The left multiplication action of L on U defines the structure of an
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L-module on U/(UC"), and it is clear from the choice of # that this
representation of L on U/(UC") is faithful. Moreover, U/(UC") is of
finite dimension over F, because U is finitely generated as an R-
module. Now let x be an element of L such that a(x) is nilpotent.
Then there is an exponent e such that a(x)?*=0, whence x*&C.
Hence x is nilpotent on U/(UC"), so that the characteristic p case of
Theorem 1 is proved.
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