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AN ADDITION TO ADO'S THEOREM1

G. HOCHSCHILD

The main purpose of this note is to point out the following strength-

ened (with respect to the nilpotency property) form of the theorem

on the existence of a faithful finite-dimensional representation of a

finite-dimensional Lie algebra.

Theorem 1. Let L be a finite-dimensional Lie algebra over an arbi-

trary field, and let a denote the adjoint representation of L. There exists

a faithful finite-dimensional representation p of L such that pix) is

nilpotent for every element x of L for which a(x) is nilpotent.

For the suggestion that this nilpotency property of p might be

secured I am indebted to Leonard Ross who used the characteristic 0

case of Theorem 1 in his proof of Ado's Theorem for graded Lie alge-

bras (Thesis, Cohomology of graded lie algebras, University of Cali-

fornia, Berkeley, 1964).

In the case of characteristic 0, it is known that there exists a faith-

ful finite-dimensional representation of L whose restriction to the

maximum nilpotent ideal of L is nilpotent [l, pp. 202-203]. Hence,

in order to establish Theorem 1 in the case of characteristic 0, it

suffices to make the following observation:

Let L be a finite-dimensional Lie algebra over a field of characteristic

0, and let M be a finite-dimensional L-module on which the maximum

nilpotent ideal N of Lis nilpotent. Let x be an element of L whose adjoint

image a(x) is nilpotent. Then x is nilpotent on M.

Proof. Write L = S+R, where R is the radical of L and S is a

semisimple subalgebra of L. Accordingly, write x — s+r, with s in

S and r in R. Since a(x) is nilpotent, it is clear that the adjoint

representation of 5 sends s onto a nilpotent derivation of 5. Since 5
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is semisimple, it follows from (the easy part of) [l, Chapter III,

Theorem 17] that there is an element t in 5 such that [5, t] —s. Now

regard L as a module for the solvable Lie algebra spanned by s and t,

via the adjoint representation. By Lie's Theorem, the commutator

subalgebra of this solvable Lie algebra is nilpotent on L, which means

thataO) is nilpotent. Since A" and 5 are nilpotent on Land [5, A]CA,

it follows by a familiar elementary argument that the Lie algebra

spanned by 5 and N is still nilpotent on L. Since [x, 5]= [r, 5]£Ar,

we may apply the same argument again to conclude that the Lie

algebra spanned by x, 5 and N is nilpotent on L. Hence r is nilpotent

on L. Since r belongs to the radical of L, this gives r£N.

Our above argument for showing that a(s) is nilpotent applies

also to show that 5 is nilpotent on M. Now 5 and N are nilpotent on

M, and it follows as above that the Lie algebra spanned by 5 and N

is nilpotent on M. Since this Lie algebra contains 5+r = x, this proves

that x is nilpotent on M.

In order to prove Theorem 1 in the case of nonzero characteristic,

we must establish the following result concerning the center of the

universal enveloping algebra of L.

Theorem 2. Let L be a finite-dimensional Lie algebra over the field

F of nonzero characteristic p, and let U denote the universal enveloping

algebra of L. Let C denote the center of L U. Then C\^i UC" = (0).

Proof. It is well known that U is left Noetherian [l, Chapter V,

Theorem 6]. Thus the ideal UC has a finite ideal basis, whence it is

clear that there is a finite subset (ci, • • • , ck) of C such that UC

= UciA- ■ • • A-Uck. We may take this subset such that it contains

a nontrivial p-polynomial xp'AraiXp'~l-\- ■ ■ ■ +a«x, with each a,- in

F, corresponding to each element x of a chosen basis of L; see [l,

Chapter VI, Lemma 5]. Let R denote the subring of U that is gen-

erated by F and (ci, ■ • ■ , ck). Then R is a Noetherian commutative

ring, and U is finitely generated as an i?-module, because of the

presence of the above p-polynomials among the c/s (see [l, Chapter

V, Lemma 4]).

Let J be the ideal of R that is generated by (c\, ■ • • , ck). Since U

has no nonzero divisors of 0 and JELU, it is clear that (l-\-j)u9*0

for every/ in J and every nonzero u in U. Hence it follows from the

well-known generalized form of Krull's Theorem [2, p. 253] that

fV-1 JnU=(0). Now UC" = (UC)n = (JU)n = J"U, so that Theorem 2

is proved.

In particular, there exists an exponent re such that (UCn)C^L = (0).

The left multiplication action of L on U defines the structure of an
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7-module on U/iUC"), and it is clear from the choice of ra that this

representation of L on U/iUCn) is faithful. Moreover, U/iUCn) is of

finite dimension over P, because U is finitely generated as an R-

module. Now let x be an element of L such that a(x) is nilpotent.

Then there is an exponent e such that a(x)p' = 0, whence xp'EC.

Hence x is nilpotent on U/iUCn), so that the characteristic p case of

Theorem 1 is proved.
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