
A CLASS OF ENTIRE FUNCTIONS WITH
BOWL-LIKE SURFACES

MINAKETAN DAS1

1. Littlewood and Offord [l] have shown that for "almost all"

entire functions of finite order p>0, the surface u = log+ |/(x4-iy) | in

the three-dimensional x, y, w-space is like a bowl, i.e. outside small

pits near the zeros, u is of order of magnitude of log M(r, f) where

M(r,f) = Snp \f(z)\.
|z|=r

However, very few of the special functions of analysis are of this

type. In this note we show that a large class of functions of the form

(1) f(z) = £[ (1 - (z/rkYk)
k=l

exhibit this behavior. The choice of the positive integers mk and the

positive numbers rk can be varied in very wide limits. We shall only

assume that

(2) mk+i ^ mk,

rk+i 5
(3) -> 1 4-for some 5 > 0,

rk mk

(4) n = o(N(rn))        as n —* oo,

where

(5) N(r)= £ mk\og(r/rk).
riSr

It is not hard to see that these conditions can be satisfied in such

a way that N(r) is of the order of magnitude r" for any assigned posi-

tive number p.

2. We show now that for (rn_ir„)1/2g \z\ =r^rn,

(6) log | f(z) |   = (1 + o(l))N(r) 4- log | 1 - (z/r)^ |        (r -* oo).

Now, for

(rn-irn)112 ^  | z |   =r <rn,
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we have

rk m*

—       < irk/rk+i)m*        ik < n - I),
z

(7) /        8 Vm*
<(l + —)      <(l+«)~1

using (3). Similarly

(8) | r„_,/z T""1 ^ (r»-iA»)"*-l/2 < (1 + 5)"1/2.

Also, for k>n, by (2) and (3)

I *A*|m* < irn/rn+i)m"-irn+i/rn+2)mn+1 ■ ■ ■ (fi-i/fi)"*^

< (1 + 5)"-4.

By (7) and (8)

(10) I>g|l-(VzH  =0(ra);
*-i

by (9),

(11) £ log I 1 - (*/r*)"*|   =0(1).
fc=n+l

Since

log | /(«) |   = Nir) + £ log | 1 - (f*/*)-» |  + log | 1 - («/r„)-% |
fe-1

CO

+   E  log | 1 - (z/^)mt I ,
k=n+l

(6) follows from (10), (11) and (4).

For rnS \z\ =r ^(r„rn+i)1/2, one has

(12) log | fiz) |  = (1 + o(l))A(r) + log | 1 - (f/r0-1        (r-* *).

It follows from (6) and (12) that

(13) log 1/00 | ~2V(r)

as z—><»  in any manner outside small circles round the zeros of

1 —(z/^)"1". It is enough to choose the radii of these circles equal to

(r„/mn)-exp(-e„-A(r„)) = r„ (say)

where e„—>0 as ra—>a>. For [ 1 —(z/rn)*"™! exceeds \Tn-mn-irn)~l out-

side the circular neighborhoods of the zeros when ra is large enough.
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3. By placing more stringent conditions on the moduli of the zeros

of f(z), it is possible to relax the symmetrical distribution of their

arguments without destroying (13).

Suppose that in addition to the conditions (2), (3) and (4) the

sequences rk and mk satisfy

rk+i/Tk sS f 1 4-J for some <r > 1,

(14) * i

lim sup log(wi Ar m2Ar • • ■ Ar m„)/log rn = p > — •
cr

Let zk,t be equal to rk exp(iOkiS), where

2tt(s — l)/mk g dk,, < 2irs/mk,        (s = I, 2, ■ ■ ■ , mk).

Let

mk    / Z   \

p*w = n(i—)•
8=1    \ Zk,t/

Let the points Ai, A2, • • • , An on | f | =R be the corners of a regular

polygon of n sides. Let Bi, B,, • ■ ■ , Bn be points on the arcs AiA2,

A2Az, • • • , AnAi respectively. Let P be any point, with affix z, in

the f-plane. As |f — z\ has but one maximum and one minimum on

| f | =R, we have

min(P^t)      PAvPAi-PA* ■ ■ ■ PAn      max(P^t)
(15)- <-^- ■

max(PBk)   '  PBvPBi-PBi ■ ■ ■ PBn '    min(PBk)

Hence, for r= \z\ 9^rk,

r — rk I pk(z) I r Ar rk
-   ^ -,- -rg   -  .
r A- rk        I 1 - (z/rk)mk \        r - rk

Since

k-i r + rk

is convergent, by hypotheses (14), it follows that

h*) = n pt(z)
k—l

is convergent and for

(16) (rn-irn)112 g r ^ (r^+x)1'2,

we obtain the estimate
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log | Fiz) I   - log I/O) I   = of log lj[[(r - rk)/ir + rk)]\)

(17) +o(log   ft   [(rk-r)/irk + r)]\)
\ k—n+l 1/

+ log I pniz) |   - log | 1 - iz/rn)m" I .

If m = n — 1, then, by (14)

'r_2 r- rk      <!£} rm - rk

i>n—- > n ——
i=i   r+rk       i-i rm -f- rk

> II (i - in/rmy) > n (i - ik/myy

<%rl                            /miy
> II (1 - ik/m)Y =    -)  > e~im > e-2".

Also, by (16) and (14) we have

'—- > — (1 - irn-i/rn))
r + rn      4

i
> — •

4ra

Hence

n—l   y — f,

log n —— = oo).
*-i r + rk

Similarly

2n      j.    — r

log n —— - oo).
*-n+i r* + r

Finally

0>logII   ^>2Elog(l--)
t>2»  rk + r \        rk/

> ~ A- JZ ir/rt) > - A-zZ ifn+i/fk)
Jfc>2n *>2n

._ /ra + IV
> - A  IZ (—r-) = 00).

*>2n \   k   /
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Using these estimates in (17), we see that

1/  v \ win
1-f—J      A-0(n).

Combined with the estimates (15) and (13) this shows that

log | F(z) | ~ N(r)

outside small pits around the zeros.
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APPROXIMATE FUNCTIONAL APPROXIMATIONS
AND THE RIEMANN HYPOTHESIS

ROBERT SPIRA

1. Introduction. Using the functional equation for the Riemann

zeta function

(i) r« = x(*)ra - *)
where

(2) i/x(s) = r»- 2 cos («/2)r(»),

it was shown in Spira [l ] that

(3) f (s) ^ 0,   1/2 < a < I,   * ̂  10   implies    | {(1 - s) \   >  | ff» |

where s = a-\-it. Using similar but improved techniques, Schoenfeld

and Dixon [2] strengthened the result (3) to assuming only rr>l/2,

|j| 2:6.8 and $(s)?±0. It easily follows from this inequality that the

Riemann hypothesis is equivalent to the inequality |f(l— s)\

>|f(5)|, l/2<a<l,t^l0.
Consider now the formula for f (s) which gives rise to the approxi-

mate functional equation and the Riemann-Siegel formula:
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