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If X is a locally compact Hausdorff space, we denote by C0(X)

the Banach space of continuous complex-valued functions on X which

are zero at infinity, with norm given by

||/||= sup |/(*) |,       fECo(X).
xeX

(We recall that if X is compact, then Co(X) consists of all continuous

complex-valued functions on X.) The well known Banach-Stone theo-

rem states that if X and Y are locally compact Hausdorff spaces,

and if Co(X) and C0(Y) are isometrically isomorphic, then X and Y

are homeomorphic. The purpose of this article is to show that, with

the additional hypothesis of first countability (which may well be

unessential), the conclusion of the theorem remains true for a class of

mappings somewhat more general than isometries.

We wish to prove the following:

Theorem. If X and Y are first countable, locally compact Hausdorff

spaces, and 4> is a continuous, norm-increasing linear isomorphism of

Co(X) onto Co(Y) with bound strictly less than two,

11/11 = hiJ)\\ = Nl 11/11,       fECo(X),U\<2,
then X and Y are homeomorphic.

In [l, p. 242] Banach defines, for two Banach spaces E and F, the

number (E, F) by

(22,F) = g.l.b. {log (||*|| IIHI)},

where d> runs through all isomorphisms of E onto F. He calls E and F

"nearly isometric" if (E, F) =0, and asks whether the "near isometry"

of two infinite-dimensional Banach spaces may imply that they are

isometric. In particular, he inquires whether the spaces c of con-

vergent sequences (continuous functions on the one-point compacti-

fication of the positive integers) and c0 of sequences convergent to

zero (functions continuous on the positive integers and zero at in-

finity), which are not isometric, are nearly isometric. Now if d> is any

continuous isomorphism of one Banach space onto another, we may,

of course, obtain a norm-increasing isomorphism <j>' by defining </>' to

Received by the editors June 2, 1965.
1 National Science Foundation postdoctoral fellow.

396



A GENERALIZED BANACH-STONE THEOREM 397

be equal to ||0-1||0. Thus the above theorem shows that (c, cn) s^log 2.

More generally, it provides the following:

Corollary. For the class of Banach spaces C0(X), with X a first

countable locally compact Hausdorff space, the notions of "isometry" and

"near isometry" are equivalent.

Before beginning the proof of the theorem, we wish to discuss

briefly the notation and method of proof to be employed. We recall

that if/* is any element of C0(A)*, then by the Riesz representation

theorem [2, p. 266] there exists a unique finite complex-valued regu-

lar Borel measure jionl such that /*if) =Jfdp for all /E Co (A), with

||/*|| = \p\ (A), where \p\ denotes the total variation of p. We will

henceforth make this identification of continuous linear functionals

and measures in our notation, applying, for example, the adjoint

mapping </>* to measures p. of the proper type on Y, and writing

pECoiY)*. Moreover, for any point xEX (resp. yE Y) we will de-

note by px (resp. pv) the positive unit mass concentrated at the point

x (resp. y).

One of the standard proofs of the Banach-Stone theorem depends

on a characterization of the extreme points of the unit ball of Co (A)*

—these points are precisely those measures of the form \px, for xEA

and X a complex number of modulus one. If <f> maps C0(A) isometri-

cally onto CoiY), then <f>* maps the set of extreme points of the unit

ball of C0(F)* onto the corresponding set in C0(A)*. Hence, for each

yEY, there exists an xE-A and a complex number X with |X| =1,

such that

(1) 4>*Pv = X/ix,

and the homeomorphism between X and Y is deduced from the cor-

respondence between x and y defined by (1). Here we will be dealing

with isomorphisms qb which need not be isometric, and hence <j>*

need not map an extreme point into an extreme point. What we show

is that if U0II is less than 2, then for each yE Y, <p*pv is "close" to a

unique extreme point of the unit ball of C0(A)*. We now make this

precise.

Proof of the theorem. Let Mbe a real number with \\4>\\ <2M<2,

and let Jlf = ||^|[ — M. For any xEX and yE Y, <t>*p„ may be written

uniquely as apx+p, where a is a complex number (which may, of

course, be zero) and pECoiX)* is such that ^i({x})=0. We denote

by Fi the set of all yE Y for which there exists an xEX such that

(2) d>*pv = apx + p,     \a\  > M,    pi{x}) = 0.
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Note that because px and p are concentrated on disjoint subsets of X,

||0*Aiy|| = |a|+||/i||. Since \\pv\\=l and \\<j>*\\ =||*||, we have \\p\\<M'
<M, which insures that at most one xEX may be associated by (2)

with any given yEY. Thus the mapping p of Yi to X determined by

p(y)=x, where x is associated with y by (2), is indeed well defined.

Next we define AT by N=l/2M, and N' by N'=l-N. We then
denote by Xi the subset of X consisting of all points x for which

there exists a y£ F with

(3) **-V, = Pit, + p,    \ 81  > N,   p({y}) = 0.

Since ||</>*-1|| =||*_1|| ^1, here we have ||m|| <N'<N, and we obtain

a well defined mapping r of Xi to Y by setting, for x£Xi, t(x) =y,

where y is associated with x by (3). The proof of the theorem is now

completed by means of three propositions.

Proposition 1. p (resp. t) is a mapping of Fi (resp. Xi) onto X

(resp. Y).

Proof. Let x be any point of X and let { Un: n = 1, 2, • • • } be a

neighborhood basis at x, with Un+iQ Un for all n. For each n, choose

a function fx,nEC0(X), with fx,n(x) =||/*,n|| = 1, and fx,n(x')=0 for

x'EX— Un (i.e., we choose a bounded sequence of functions con-

verging pointwise to the characteristic function of {x}). Then

limB ffx.ndp exists for all pEC0(X)*, and hence limB f<p(fx,n)dp exists

for all pECo(Y)*. In particular, limn fd>(fx,n)dp1/ = limn(<p(fx,n))(y)

exists for all yEY.

We claim there is at least one y£ Y such that limB | (<p(Jx,n))(y) \

> M. For if not, since the moduli | <p(fx,n) \ are uniformly bounded by

2, we would obtain

1 = lim   f fx,n dpx = lim   f <p(fx.n)d(<b*-ipx)
n     J n     J

= f Urn 4>(fx,S\ d(<b*~ipx) g f IAim *(/-.«))| ^ I **-Vx |   ̂  Jf,

which is absurd. Hence fixing such a y, and writing ^Vi^ojMi+Mi

a complex and p( {x}) = 0, we have

lim (<£(/IlB))(y) = lim   j <b(fx.n)dpv = lim   I fx,nd(<p*py)
n n     •/ »     «/

= lim   I ft.nd(apx) = a.
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Thus \a\ >M, yEYi, and piy)=x. Moreover, since x was an arbi-

trary element of X, p maps Fi onto X.

Similarly, we see that if y is any point of Y, and g„,n is a uniformly

bounded sequence of elements of CoiY) converging pointwise to the

characteristic function of {y}, there must exist at least one x in X

with lim„ | (</>-1(g?,n))(x) | > N. For such an x we have <p*-1px = fipy+p.,

fi complex, \fi\ >N, pi{y})=0, and the statements about Xi and r

follow.

Proposition 2. If yE Fi, and piy) =x, then xEXi and r(x) =y.

Proof. Let y belong to F, and let gv,n be a sequence of elements

of C0(F) with uniformly bounded moduli, converging point-

wise to the characteristic function of {y}- Let piy) =x, and suppose

that either x is not an element of Xi, or that x belongs to Xi but

r(x) 7^ y. Either supposition leads to the conclusion that

lim„ | i4>-1igv,n))ix) | ^ N. We might then define P by

P= sup   lim(^>-1(g„,n))(x') ,
ae'eX      n

and choose x'EX such that

lim | f>-1(fo,»))f>') |  > max{A, M'P/M}.

Now x'^x, so that there exists a y'E Fi, y'^y, with p(y') =x'. That

is to say, <b*p.v-=apx>+p, with |a| >M, pi{x'})=0, and ||ju|[<Af'.

We would then have

0 = lim   I  g„,n<W = lim   I  <£-1(gi/.»y(4>*/v)
n     «/ n     •/

= lim   I 0_1(gy,n)^(aM*') + lim   I 4>~ligv,*)dp.
n     •/ n     J

But the modulus of the first term on the right is greater than ATP,

while the modulus of the second term is less than M'P, and this con-

tradiction completes the proof of the proposition.

Proposition 3. Y\ = Y, and p is a homeomorphism of Y onto X.

Proof. The previous proposition implies that X=p[Yi)C.Xi. It

also shows that F=t(A~i)C Fi. (For p maps F, onto X; hence given

xEXiQX, there exists a yEYi with piy)=x. By Proposition 2,

t(x) =yE Fi.) Thus p maps F onto A", p is injective since t is a func-
tion, and T=p~x.
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We next show that r is a closed mapping. Suppose that F is a

closed subset of X. If y(£r(F), then p(y)=x(£F, and <fa*py=apxArp,

with \a\ >M, p({x}) =0, and ||ju|| <M' <M. Since A" —Pis open and

p is regular, there exists fxEC0(X) with \\fx\\ =fx(x) = 1, fx(x') =0 for

x'EF, and J\fx\d\p\ <\ct\ —M. This means that

I (*(/.))(y) I   = I f<t>(fx)dpv\ = I f fxd(<t>*pv)\

=     I  fxd(apx) +   I   4^M ^     I  fxd(apx)

i r    i
/A > M.

I V

But for y'Er(F), <p*py,=a'px>Arp', with x'£P, ju({*'})=°> and

||ai'||<M', so that

I (<t>(fx))(y')\ = I f *(A)<w| = I ( fJ(<t>*»J

= I f fxd(a'px>) Ar f fxdp'l < f \fx\d\p'\<M'<M.

Hence, if we choose such a function fx for each x=p(y), with y£ Y

-t(F), then

r(F)=     n    [y: \(<b(fx))(y)\  =M},
IGX-?

a closed set. Therefore T = p~l is a closed mapping and p is continuous.

By an analogous argument, p_1 is continuous, and thus p is a homeo-

morphism.

Remark. I have recently been informed that the case (c, c0)

^log 2 was previously proved, but not published, by A. Pelczynski.
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