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The finite interpolation problem for AD-functions on planar (zero

genus) Riemann surfaces was completely solved by Sario [2] and

Rodin [l]. We shall extend their result to the case of Riemann sur-

faces with finite genus.

Theorem. Let R be an open Riemann surface of finite genus. Given a

finite number of distinct points f* (k = 1, 2, • • ■ , n) in R, local param-

eters zk at %k with zk($k)=0 (k = l, 2, ■ ■ ■ , n) and complex numbers

cc,k (v = 0, 1, • • • , m; k = l, 2, • ■ • , n). Then there exists a bounded

analytic function f with finite Dirichlet integral on R such that

d'f
(1) -(f*) = a,k        (v = 0, 1, • ■ • , m; k = 1, 2, • • • , n)

dz'k

if and only if R does not belong to the class Oad-

Proof. The necessity of the condition P(£0ad is evident. We have

to show the solvability of (1) under the condition P(£0ad- Since R

has finite genus, P(J;0ad implies the existence of a nonconstant ABD-

function F(z) on R. Let R* be a closed Riemann surface which con-

tains R as a subsurface. Choose a point f0 in R— {fi, £,,-■•, £n}

such that P(fo) r* F(lk) (k = I, 2, ■ ■ ■ , n). For each fixed

k (k = l, 2, • • • , n), by Riemann-Roch's theorem, there exists a

meromorphic function rk(z) on R* such that rk(z) has a simple pole at

f* and a pole of order nk at f 0 and regular on R* — {f 0, fk} ■ Let mk be

the order of zero of the function XI?-i (F(z) — F(% A)m+1 at f* and let

5 = max {mknk; k = l, 2, • • • , «}. Put

H(z) = (F(z) - F(U)Y fl (F(z) - *(&))-»
;=i

which belongs to the class ABD(P). By construction, (dmkH/dz™k)(t;k)

9*0 and (zkrk)(fk) 9*0. Hence for each v (v = 0, 1, • • • ,m),we may set

r 1    dmkH mk-'~\ -1

3,k(z) =    (vl)--•—— (r*)((z*r*)(r*)) • (rk(z))mk--H(z).
L        mk\    dzl" J
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Again from the construction it is easy to see that H,k belongs to

ABD(A) and for each ft (ft = l, 2, • • • , »),

tfoiGv) = hj       (j = 1. 2, • • • , «)

and moreover for each fixed v iy = l, 2, ■ • ■ , m),

d"Hrk
—r— Gi) = 0       0* = 0, 1, • • • , v - l;j = 1, 2, • • • , n),

dz*

d"Hvk
—— Gy) = hi     (J = 1, 2, • • • , ra).

dz-j

Define m + 1 functions P,iz) iv = 0, • • ■ , m) on R inductively by

P,(z) = Py_iiz) + £ (a„ - -^- (fy) Wz)        iv = 0, • • •, m)
i=i \ dz-j /

with P_i = 0. Then /(z) =Pmiz) belongs to ABD(A) and satisfies (l).

Corollary. Let R be an open Riemann surface of finite genus not

belonging to the class Oad and ^ = ^iitk), izk), ia,k)) be the class of all

AD-j'unctions f on R satisfying the interpolating condition (1). Then

the class J is not empty and there exists a unique function f0 in JF such

that
Dif)= Difo) + D(J - /„)

for any f in JF and a fortiori /0 is the unique solution with minimum

norm of the interpolation problem given by (1):

Difo) = min{Dif);fE5}.

Proof. For each closed parametric disk Kk with local parameter

zk (ft = l, 2, • ■ • , ra) and for any relatively compact parametric disk

U with local parameter z such that £kE U ik = 1, 2, • • • , w), by the

local subharmonicity of |/'|2 for fE$ and Cauchy's inequalities, we

can find a constant Cu such that

(2)    | /i(z) - /2(z) |2 + zZ ZZ -j- (*) - -J- («*)     ^ ^D(JX - f2)
*_i »_o   dz^ dz-k

for any zEU, zkEKk (ft = l, 2, • • • , ») and/i, f2E&- Let {/„} be a

sequence such that {fn}E'5 and limn D(Jn) =d = inf {D(J); /Eff}.

Since ifn+fn+P)/2E'S and

Difn ~ /»+*) = 2iDifn) + Difn+P)) - 4fl(/n+2/n+P)

g 2(Z>(/„) + Difn+P)) - id,
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we conclude that limn D(fn—fn+p) =0 for any p. This with (2) gives

the existence of a function /0 in ff such that limn D(fn— /o) =0 so

that D(fo) =d. For any/G? and any complex number A,/0+A(/— /0)

GI Hence D(f0 + X(/ - /0)) 2: D(f0). Whence it follows that

D(f0, /-/o)=0. Therefore D(f) = Z>(/0+ (/-/„)) =D(f0)A-D(f-fa)
= d+D(f-f0). Thus D(f) =d if and only if /=/0.
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