FINITE INTERPOLATION FOR ANALYTIC FUNCTIONS WITH FINITE DIRICHLET INTEGRALS

MITSURU NAKAI1

The finite interpolation problem for AD-functions on planar (zero genus) Riemann surfaces was completely solved by Sario [2] and Rodin [1]. We shall extend their result to the case of Riemann surfaces with finite genus.

THEOREM. Let R be an open Riemann surface of finite genus. Given a finite number of distinct points ζ_k $(k=1, 2, \dots, n)$ in R, local parameters z_k at ζ_k with $z_k(\zeta_k) = 0$ $(k=1, 2, \dots, n)$ and complex numbers $\alpha_{\nu k}$ $(\nu = 0, 1, \dots, m; k = 1, 2, \dots, n)$. Then there exists a bounded analytic function f with finite Dirichlet integral on R such that

(1)
$$\frac{d^{r}f}{dz_{k}^{r}}(\zeta_{k})=\alpha_{rk} \qquad (r=0,1,\cdots,m;\,k=1,2,\cdots,n)$$

if and only if R does not belong to the class OAD.

PROOF. The necessity of the condition $R \oplus 0_{AD}$ is evident. We have to show the solvability of (1) under the condition $R \oplus 0_{AD}$. Since R has finite genus, $R \oplus 0_{AD}$ implies the existence of a nonconstant ABD-function F(z) on R. Let R^* be a closed Riemann surface which contains R as a subsurface. Choose a point ζ_0 in $R - \{\zeta_1, \zeta_2, \cdots, \zeta_n\}$ such that $F(\zeta_0) \neq F(\zeta_k)$ $(k = 1, 2, \cdots, n)$. For each fixed k $(k=1, 2, \cdots, n)$, by Riemann-Roch's theorem, there exists a meromorphic function $r_k(z)$ on R^* such that $r_k(z)$ has a simple pole at ζ_k and a pole of order n_k at ζ_0 and regular on $R^* - \{\zeta_0, \zeta_k\}$. Let m_k be the order of zero of the function $\prod_{j=1}^n (F(z) - F(\zeta_j))^{m+1}$ at ζ_k and let $s = \max\{m_k n_k; k = 1, 2, \cdots, n\}$. Put

$$H(z) = (F(z) - F(\zeta_0))^s \prod_{j=1}^n (F(z) - F(\zeta_j))^{m+1},$$

which belongs to the class ABD(R). By construction, $(d^{m_k}H/dz_k^{m_k})(\zeta_k) \neq 0$ and $(z_k r_k)(\zeta_k) \neq 0$. Hence for each ν ($\nu = 0, 1, \dots, m$), we may set

$$H_{\nu k}(z) = \left[(\nu !) \cdot \frac{1}{m_k !} \cdot \frac{d^{m_k} H}{dz_k^{m_k}} (\zeta_k) ((z_k r_k)(\zeta_k))^{m_k - \nu} \right]^{-1} \cdot (r_k(z))^{m_k - \nu} \cdot H(z).$$

Received by the editors August 18, 1965.

¹ This work was sponsored by the U. S. Army Research Office, Durham, Grant DA-AROD-31-124-G499, University of California, Los Angeles.

Again from the construction it is easy to see that H_{rk} belongs to ABD(R) and for each k ($k=1, 2, \cdots, n$),

$$H_{0k}(\zeta_j) = \delta_{kj} \qquad (j = 1, 2, \cdots, n)$$

and moreover for each fixed ν ($\nu = 1, 2, \dots, m$),

$$\frac{d^{\mu}H_{\nu k}}{dz_{j}^{\mu}}(\zeta_{j}) = 0 \qquad (\mu = 0, 1, \dots, \nu - 1; j = 1, 2, \dots, n),$$

$$\frac{d^{\nu}H_{\nu k}}{dz_{j}^{\nu}}(\zeta_{j}) = \delta_{kj} \qquad (j = 1, 2, \dots, n).$$

Define m+1 functions $P_{\nu}(z)$ $(\nu=0, \cdots, m)$ on R inductively by

$$P_{\nu}(z) = P_{\nu-1}(z) + \sum_{j=1}^{n} \left(\alpha_{\nu j} - \frac{d^{\nu} P_{\nu-1}}{dz_{j}^{\nu}}(\zeta_{j})\right) H_{\nu j}(z) \qquad (\nu = 0, \cdots, m)$$

with $P_{-1} = 0$. Then $f(z) = P_m(z)$ belongs to ABD(R) and satisfies (1).

COROLLARY. Let R be an open Riemann surface of finite genus not belonging to the class 0_{AD} and $\mathfrak{F} = \mathfrak{F}((\zeta_k), (z_k), (\alpha_{vk}))$ be the class of all AD-functions f on R satisfying the interpolating condition (1). Then the class \mathfrak{F} is not empty and there exists a unique function f_0 in \mathfrak{F} such that

$$D(f) = D(f_0) + D(f - f_0)$$

for any f in \mathfrak{F} and a fortior f_0 is the unique solution with minimum norm of the interpolation problem given by (1):

$$D(f_0) = \min\{D(f); f \in \mathfrak{F}\}.$$

PROOF. For each closed parametric disk K_k with local parameter z_k $(k=1, 2, \dots, n)$ and for any relatively compact parametric disk U with local parameter z such that $\zeta_k \in U$ $(k=1, 2, \dots, n)$, by the local subharmonicity of $|f'|^2$ for $f \in \mathfrak{F}$ and Cauchy's inequalities, we can find a constant c_U such that

$$(2) ||f_1(z) - f_2(z)||^2 + \sum_{k=1}^n \sum_{r=0}^m \left| \frac{d^r f_1}{dz_k^r} (z_k) - \frac{d^r f_2}{dz_k^r} (z_k) \right|^2 \le c_U D(f_1 - f_2)$$

for any $z \in U$, $z_k \in K_k$ $(k = 1, 2, \dots, n)$ and $f_1, f_2 \in \mathfrak{F}$. Let $\{f_n\}$ be a sequence such that $\{f_n\} \subset \mathfrak{F}$ and $\lim_n D(f_n) = d = \inf \{D(f); f \in \mathfrak{F}\}$. Since $(f_n + f_{n+p})/2 \in \mathfrak{F}$ and

$$D(f_n - f_{n+p}) = 2(D(f_n) + D(f_{n+p})) - 4D\left(\frac{f_n + f_{n+p}}{2}\right)$$

$$\leq 2(D(f_n) + D(f_{n+p})) - 4d,$$

we conclude that $\lim_n D(f_n - f_{n+p}) = 0$ for any p. This with (2) gives the existence of a function f_0 in $\mathfrak F$ such that $\lim_n D(f_n - f_0) = 0$ so that $D(f_0) = d$. For any $f \in \mathfrak F$ and any complex number λ , $f_0 + \lambda(f - f_0) \in \mathfrak F$. Hence $D(f_0 + \lambda(f - f_0)) \geq D(f_0)$. Whence it follows that $D(f_0, f - f_0) = 0$. Therefore $D(f) = D(f_0 + (f - f_0)) = D(f_0) + D(f - f_0) = d + D(f - f_0)$. Thus D(f) = d if and only if $f = f_0$.

REFERENCES

- 1. B. Rodin, Reproducing formulas on Riemann surfaces, Doctoral Dissertation, University of California, Los Angeles, Calif., 1961.
- 2. L. Sario, Extremal problems and harmonic interpolation on open Riemann surfaces, Trans. Amer. Math. Soc. 79 (1955), 362-377.

University of California, Los Angeles and Nagoya University