EXISTENCE OF POSITIVE HARMONIC FUNCTIONS¹

MITSURU NAKAI

1. Consider an open Riemann surface R. In this note by a distinguished subregion G of R we understand that G is a subregion of R with nonempty analytic relative boundary ∂G and with noncompact closure \overline{G} . The purpose of this note is to give a simple proof of the following theorem of Parreau [5]:

THEOREM. For any distingished subregion G of an arbitrary open Riemann surface R, there exists a nonconstant positive harmonic function u on G with continuous boundary value zero on ∂G .

It is interesting to compare the theorem³ with the so-called "two domains criterion" due to Bader-Parreau [1] and Mori [4]: An open Riemann surface R does not belong to the class O_{HB} (resp. O_{HD}) if and only if there exist two disjoint distinguished subregions of R carrying nonconstant HB (resp. HD) functions with continuous boundary values zero on their relative boundaries. The theorem shows that the two domains criterion fails for the class O_{HP} .

Another consequence of the theorem is that the Martin compactification G^* of any distinguished subregion G, considered as a Riemann surface, always contains an HP-minimal point other than those HP-minimal points identified with points in ∂G , no matter whether $R \in O_G$ or not. For Martin's compactification and HP-minimal points see e.g. Constantinescu-Cornea [2].

The proof of the theorem will be given in §§2-4.

2. Let G be a distinguished subregion of an open Riemann surface R. Fix a point $p_0 \in G$. We denote by $g_G(p, q)$ the Green's function of G. We choose an arbitrary sequence $\{q_n\}$ of points in G converging to the ideal boundary of G, i.e. converging to the Alexandroff points of G. Following Martin [3] we set

(1)
$$u_n(p) = \frac{g_G(p, q_n)}{g_G(p_0, q_n)}$$

Received by the editors November 10, 1965 and, in revised form, December 13, 1965.

¹ This work was sponsored by the U. S. Army Research Office (Durham), Grant DA-ARO(D)-31-124-G 499, University of California, Los Angeles.

² The author is indebted to Professor K. Oikawa for suggesting this problem to him, and to Professor T. Kuroda for suggesting a reference.

^{*} The thorem can be expressed simply as $G \nsubseteq SO_{HP}$. A comparison of this with the following is also interesting: $G \subseteq SO_{HB}$ (resp. SO_{HD}) if $R \subseteq O_G$, and $G \nsubseteq SO_{HB}$ (resp. SO_{HD}) if $R \not \subseteq O_G$ and ∂G is compact.

for p in $R-q_n$. Observe that $u_n(p_0)=1$. Since $u_n\in HP(\Omega)$ for any relatively compact subregion Ω and for sufficiently large n, $\{u_n\}$ constitutes a normal family. Therefore by chosing a suitable subsequence of $\{q_n\}$, we may assume that

(2)
$$u_{\infty}(p) = \lim_{n \to \infty} u_n(p)$$

exists in G. Obviously $u_{\infty} \in HP(G)$ and $u_{\infty} > 0$ in G since $u_{\infty}(p_0) = \lim u_n(p_0) = 1$.

3. The proof will be complete if we show that u_{∞} has the continuous boundary value zero on ∂G . Take an arbitrary open arc α in ∂G with compact closure. We only have to show that u_{∞} has the continuous boundary value zero on α .

Join the two endpoints of α by a simple analytic arc γ in G so that the subregion F of G bounded by $\alpha \cup \gamma$ is simply connected. By the Riemann mapping theorem we can map F onto the open unit disk U by a conformal mapping ϕ . By Carathéodory's theorem ϕ can be assumed to be a topological mapping of \overline{F} onto $\overline{U} = U \cup C$, where C denotes the unit circle. We set $\beta = \phi(\alpha)$, which is an open subarc of C, and

(3)
$$v_k(z) = u_k(\phi^{-1}(z))$$

on U for $k = 1, 2, \dots, \infty$. Clearly $v_k \in HP(U)$ $(k = 1, 2, \dots, \infty)$ and in view of (2)

$$v_{\infty}(z) = \lim_{n \to \infty} v_n(z)$$

on U. Moreover v_n is continuous on \overline{U} for $n=1, 2, \cdots$ and by (1)

$$(5) v_n = 0 (n = 1, 2, \cdots)$$

on β . If we show that v_{∞} has continuous boundary value zero on β , then the same conclusion follows for u_{∞} on α .

4. Let μ_n be the regular Borel measure on C defined by

(6)
$$d\mu_n(\zeta) = \frac{1}{2\pi} v_n(\zeta) \mid d\zeta \mid$$

for $\zeta \in C$ and $n = 1, 2, \dots$, where $|d\zeta|$ denotes the linear measure on C. By using the Poisson formula

(7)
$$v_n(z) = \int_C \frac{1 - |z|^2}{|\zeta - z|^2} d\mu_n(\zeta)$$

for $z \in U$ and $n = 1, 2, \cdots$. In particular $\mu_n(C) = v_n(0)$ and thus by (4) $\{\mu_n(C)\}$ is bounded. In view of the selection theorem (see e.g. Constantinescu-Cornea [2, p. 9]), by choosing a suitable subsequence of $\{\mu_n\}$, we may assume that there exists a regular Borel measure μ_{∞} on C such that

(8)
$$\lim_{n\to\infty} \int_C \lambda(\zeta) \ d\mu_n(\zeta) = \int_C \lambda(\zeta) \ d\mu_\infty(\zeta)$$

for any real-valued continuous function λ on C. By (4), (7) and (8) with $\lambda(\zeta) = (1-|z|^2) \cdot |\zeta-z|^{-2}$ we obtain

(9)
$$v_{\infty}(z) = \int_C \frac{1 - |z|^2}{|\zeta - z|^2} d\mu_{\infty}(\zeta)$$

in *U*. The definition (6) of μ_n with (5) shows that $\mu_n(\beta) = 0$ $(n=1, 2, \cdots)$. Therefore by (8) we conclude that

$$\mu_{\infty}(\beta) = 0.$$

Take a point z_1 in β and let ρ be the distance between z_1 and $C-\beta$. Then from (9) and (10) it follows that

$$0 < v_{\infty}(z) < 4\rho^{-2}\mu_{\infty}(C)(1 - |z|^{2})$$

if $z \in U$ and $|z-z_1| < \rho/2$. This shows that v_{∞} has continuous boundary value zero at z_1 and thus $v_{\infty} = 0$ on β .

REFERENCES

- 1. R. Bader and M. Parreau, Domaines non compacts et classification des surfaces de Riemann, C. R. Acad. Sci. Paris 232 (1951), 138-139.
- 2. C. Constantinescu and A. Cornea, *Ideale Ränder Riemannscher Flächen*, Springer-Verlag, Berlin, 1963.
- 3. R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172.
- 4. A. Mori, On the existence of harmonic functions on a Riemann surface. J. Fac. Sci. Univ. Tokyo. 6 (1951), 247-257.
- 5. M. Parreau, Sur les moyennes des fonction harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble) 3 (1951), 103-197.

University of California, Los Angeles and Nagoya University