
EXISTENCE OF POSITIVE HARMONIC FUNCTIONS1
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1. Consider an open Riemann surface A. In this note by a dis-

tinguished subregion G of R we understand that G is a subregion of R

with nonempty analytic relative boundary dG and with noncompact

closure G. The purpose of this note is to give a simple proof of the

following theorem of Parreau [5]:2

Theorem. For any distingished subregion G of an arbitrary open

Riemann surface R, there exists a nonconstant positive harmonic func-

tion u on G with continuous boundary value zero on dG.

It is interesting to compare the theorem3 with the so-called "two

domains criterion" due to Bader-Parreau [l] and Mori [4]: An open

Riemann surface R does not belong to the class Ohb (resp. Ohd) if

and only if there exist two disjoint distinguished subregions of R

carrying nonconstant HB (resp. HD) functions with continuous

boundary values zero on their relative boundaries. The theorem shows

that the two domains criterion fails for the class Ohp-

Another consequence of the theorem is that the Martin compacti-

fication G* of any distinguished subregion G, considered as a Rie-

mann surface, always contains an ifP-minimal point other than those

.HP-minimal points identified with points in dG, no matter whether

AGOg or not. For Martin's compactification and HP-minimal points

see e.g. Constantinescu-Cornea [2].

The proof of the theorem will be given in §§2-4.

2. Let G be a distinguished subregion of an open Riemann surface

R. Fix a point poEG. We denote by gaip, s) the Green's function of

G. We choose an arbitrary sequence {qn} of points in G converging

to the ideal boundary of G, i.e. converging to the Alexandroff points

of R. Following Martin [3] we set

m fj.s      Soip,qn)
(!) Unip) = ——-

goipo, qn)
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* The thorem can be expressed simply as G(£.SOhp- A comparison of this with the

following is also interesting: GESObb (resp. SOhd) if REOo, and G^SOhb (resp.

SObd) if R(^0g and dG is compact.
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for p in R — qn. Observe that un(p0) = l. Since unEHP(Q) for any

relatively compact subregion ft and for sufficiently large n, jw„J con-

stitutes a normal family. Therefore by chosing a suitable subsequence

of {qn}, we may assume that

(2) ux(p) = lim un(p)
n—»»

exists in G. Obviously u„EHP(G) and ux>0 in G since ux(po)

= lim«„(j>o) = l.

3. The proof will be complete if we show that ux has the continuous

boundary value zero on dG. Take an arbitrary open arc a in dG with

compact closure. We only have to show that wM has the continuous

boundary value zero on a.

Join the two endpoints of a by a simple analytic arc y in G so that

the subregion F of G bounded by ctWy is simply connected. By the

Riemann mapping theorem we can map F onto the open unit disk U

by a conformal mapping <j>. By Caratheodory's theorem <f> can be as-

sumed to be a topological mapping of F onto U=U\JC, where C

denotes the unit circle. We set 8 =<p(a), which is an open subarc of C,

and

(3) vk(z) = uk(<p-\z))

on L7forfe = l,2, • • • , «. Clearly vkEHP(U) (& = 1,2, • • • , <=o) and

in view of (2)

(4) vx(z) = lim vn(z)
n—»«>

on U. Moreover vn is continuous on U for n = l, 2, ■ ■ ■   and by (1)

(5) vn = 0       (n = I, 2, ■ ■ ■ )

on 8. Ii we show that vx has continuous boundary value zero on 8,

then the same conclusion follows for w„ on a.

4. Let pn be the regular Borel measure on C defined by

1 ,
(6) dpn(i;) = — vn(0 | if |

27T

for £ EC and « = 1, 2, • • • .where |df| denotes the linear measure on

C. By using the Poisson formula

r i - hi2
(7) *„(*) =        -j-[-t- dun(t)

Jc   \t - z|2
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for zEU and ra = l, 2, • • • . In particular Mn(C) =Wn(0) and thus by

(4) {ptniC)} is bounded. In view of the selection theorem (see e.g.

Constantinescu-Cornea [2, p. 9]), by choosing a suitable subsequence

of {fin}, we may assume that there exists a regular Borel measure

Moo on C such that

(8) lim    f X(r) <W(f) =  f X(f) (fr-CT)

for any real-valued continuous function X on C. By (4), (7) and (8)

with X(f) = (1 - | z\2) ■ | f -z\ ~2 we obtain

r i — I «!*
(9) »„(*) = ■       '   '  <Wf)

Jc   \t-z\2

in £/. The definition (6) of p.n with (5) shows that nn(8) = 0

(ra = l, 2, • • • )• Therefore by (8) we conclude that

(10) P„(J3) = 0.

Take a point Zi in fi and let p be the distance between Zi and C—fi.

Then from (9) and (10) it follows that

0 <».(«) <4p-V.(0(l- hi2)

if zE U and | z — zi| <p/2. This shows that »« has continuous bound-

ary value zero at z, and thus »„ = 0on fi.
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