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1. Introduction. There are many conditions which are known to

characterize those normed linear spaces (NLS) X which are inner

product spaces (IPS), that is, conditions under which it is possible

to define an inner product in X in such a way that it will induce the

given norm (cf. [l]). However, little is known about when a NLS X

is merely equivalent to an IPS, that is, when it is possible to define

an inner product in X in such a way that the induced norm is equiv-

alent to the given norm. Two norms | • 11 and | • 12 in X are called

equivalent if there exists a constant J^l so that (l/&)|x|i^ |x|2

^£|x|i for each x in X. The only such characterizations known to

us are those in [3], [4], and [5]. In this paper, we give another such

characterization. The statement and proof of our main theorem are

in §3. In §2 we prove a preliminary result concerning the existence of

invariant means on a certain space of bounded real-valued functions^

2. Invariant means. Let (S, ^) be a semilattice, that is, a partially

ordered set (reflexive, antisymmetric and transitive) in which every

pair of elements have a least upper bound (write: sV< = l-u.b. {s, t}).

Let m(S) be the Banach space of bounded real-valued functions de-

fined on 5 with the supremum norm. Since S is a directed set, each

element / in m(S) is a net and we let c(S) be the closed linear sub-

space of m(S) consisting of those functions which are convergent nets.

For/ in c(S), let 4>(f) =lims f. Then <f> is a bounded linear func-

tional on c(S). For/ in m(S), let

p(f) = lim sups/ = lims [sup {f(t): t ^ s}]

q(f) = lim inisf = lims [inf {/(/): t ^ s}].

For each s in S, let L, be the linear operator in m(S) defined by,

(L,f)(t)=f(sVt).

It is easily seen that,

(i) (i,:J in 5| is a commutative semigroup of bounded linear

operators on m(S),

(ii) L,(c(S)) Qc(S), for each s in S,
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(iii) 4>iLf) =<pif), ior each 5 in 5 and / in c(S), and

(iv) piL3f) =p(f), ior each s in 5 and/ in ?ra(5).

Since, in addition, <£(/) =p(f) ior each / in c(5), by a generalization

of the Hahn-Banach Theorem due to M. A. Woodbury [7] (cf. [6,

p. 164]), there exists an extension $ of 0 to rai(S) (<P in ira(5)*) such

that

(a) <£(/) ^pif) ior each/ in ?ra(5), and

(b) *(A,/) = *(/) for each s in 5 and / in ra?(5).

From (a) it follows that qif) = -pi~f) ^ <£>(/), that is,

(c) qif) ^$(/) ^Pif) for each / in wz(5).

3. The main theorem.

Theorem. Let X be a NLS. Then a necessary and sufficient condi-

tion that X be equivalent to an IPS is that there exist a constant k^l

such that for each finite dimensional subspace M of X, there exists a

linear mapping Tm of M into H iHilbert space) such that (l/&)|x|

^ | Tmx I S k | x | for each x in M.

Proof. The necessity is obvious. To prove the sufficiency, let 5

be the set of finite dimensional subspaces of X ordered by contain-

ment. Then 5 is a semilattice where MVN=M+N (vector sum) for

M and N in 5. Thus, by the results of the previous section, there

exists a functional $ in ?ra(5)* satisfying conditions (a), (b) and (c).

For x in X, define fx in wj(5) by,

(| TMx I    if x is in M,
fxiM) =  < .

(.     0 if x is not in M.

Now, let ra(x) = [$ifx) ]1/2. We wish to show that ra is an inner product

norm in X equivalent to the original one.

Clearly, ra is a nonnegative function and w(ax) = |o:|ra(x) for any

vector x and scalar a. Also, for any vector x, we have

/ n2     */A i = #C/S = tlim sups/x]2 ^[k\x\ ]\

n{X)   = ^U aifl)= [lim inisfx]^[H/k) \ x\]2,

so,

(l/£)|x|   ^ nix) g k\x\ .

Thus, ra(x) =0 if and only if x = 0, and if ra is a norm, it is equivalent

to the original one. To show that ra is a norm, it remains to show that

n satisfies the triangle law. This will follow once we show that ra

satisfies the parallelogram law (and hence, is an inner product norm).
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For vectors x and y in X, let N be the subspace spanned by x and

y. Then, for any subspace M such that M^.N, we have

2[fl(M) A-fl(M)] = 2[| 7Vx|2 + | r*/y|2]

=  | TMx — TMy |2 + I TMx + TMy\2

= fl_v(M) + fx+v(M)

where the second equality follows since Tm(M) is a subspace of Hil-

bert space and the norm in a Hilbert space does satisfy the parallelo-

gram law. Applying d>, it follows that

2[n(x)2 + n(y)2] = n(x — y)2 + n(x + y)2

that is, n satisfies the parallelogram law.

Now, let 75= {x:w(x)^l}. Then n is the Minkowski functional

of 75 and will satisfy the triangle law if B is convex (cf. [l, p. 11]).

To see that B is convex, we note first that although the mapping

x—>fx of X into m(S) is not continuous, the mapping x—>w(x) of X

into the real numbers is continuous. Suppose now that x and y are

vectors with n(x)=n(y) = l and for some a with 0<a<l, we have

w(ax + (l — a)y) > 1. Then, by the continuity of n, there exists a.i and

a2 so that Q^cti<a<a2^l, «(a,x + (l — aAy) = 1 for i = l, 2, and if

ai<B<a2 then n(8x-\-(l— 8)y) > 1. Let x<=aiX+(l— aAy for i = l,2.

Then, by the parallelogram law, we have

4 = 2[»(x!)2 + n(x2)2] = n(xi + X2)2 + n(xi — x2)2

= «(xx + x2)2 = 4«((l/2)(x1 + x2))2 > 4.

This contradiction establishes the convexity of B.

Corollary. Let X be a NLS. Then a necessary and sufficient condi-

tion that X be equivalent to an IPS is that there exists a constant k^l

such that for each pair of finite dimensional subspaces M and N with

dim M = dim N, there exists a linear mapping T of M onto N such

that (l/k)\x\ ^ I Px| ^&|x| for each x in M.

This corollary is an immediate consequence of our theorem and the

following theorem due to Dvoretzky [2].

Theorem (Dvoretzky). Given e (0<e<l) and a positive integer m,

there exists an integer N = N(m, e) such that if C is any symmetric con-

vex body in En (real Euclidean n-space), where n^N, then there is a

subspace Em and a positive number r so that 75r(1_e)CCP\£mC73r, where

75.= {x in Em: \x\ g,s}.
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Remark. We note that our theorem is applicable to any NLS

whether or not it be separable. Also, the mappings Tm need only

exist for some semilattice 5 of finite dimensional subspaces M of X

such that the vector subspace U {M: M in S} is dense in A. In case

X is separable, the mappings Tm need only exist for a sequence {Mn}

of finite dimensional subspaces such that Mn+i 3 Mn and

U {Mn' ra = 1, 2, • • • } is dense in X. In this latter case, the functional

dj> is an ordinary Banach limit on the Banach space of bounded se-

quences.
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