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Using these estimates in (17), we see that

1/  v \ win
1-f—J      A-0(n).

Combined with the estimates (15) and (13) this shows that

log | F(z) | ~ N(r)

outside small pits around the zeros.
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APPROXIMATE FUNCTIONAL APPROXIMATIONS
AND THE RIEMANN HYPOTHESIS

ROBERT SPIRA

1. Introduction. Using the functional equation for the Riemann

zeta function

(i) r« = x(*)ra - *)
where

(2) i/x(s) = r»- 2 cos («/2)r(»),

it was shown in Spira [l ] that

(3) f (s) 9*0,   1/2 < a < I,   i^lO   implies    | {(1 - s) \   >  | ff» |

where s = a-\-it. Using similar but improved techniques, Schoenfeld

and Dixon [2] strengthened the result (3) to assuming only rr>l/2,

|j| 2:6.8 and £(s)r*0. It easily follows from this inequality that the

Riemann hypothesis is equivalent to the inequality |f(l— s)\

>|f(5)|, l/2<a<l,t^l0.
Consider now the formula for f (s) which gives rise to the approxi-

mate functional equation and the Riemann-Siegel formula:
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e''T*r(i — s) r w*-v-mw
(4) fW = g.W+-—-       —--dw

2m        J c    ew — I

where

m m

(5) g.0) = £ «- + xis) ■ Z "-1.
n=l n=l

The gm(s) are the approximate functional approximations of the title,

and, as noted implicitly by Titchmarsh ([4, p. 74]), they satisfy the

same functional equation as f(s). Hence, just as in the case of the

f-function, gmis) has its zeros on the critical line for \t\ >6.8 if and

only if | gmil—s) \ > \ gmis) \.

It is thus natural to write (4) in the form

Us) = gmis) + B

and study the location of the zeros of gmis), (hopefully on the critical

line), and attempt to carry the final conclusion of the Riemann hy-

pothesis via the ideas of Rouche.

It is indeed possible to show that gi(s) and g2(s) have their zeros

on the critical line (for t sufficiently large) and this proof is carried

out in §3, with the aid of two lemmas in §2.

Massive calculations were undertaken to verify the hypothesis for

m^3, but these calculations instead revealed a remarkable scientific

situation, which reinforces the possibility of using Rouche's theorem.

The evidence strongly suggests the conjecture: If m^3, and 5 is in

the critical strip, then gm(s) has its zeros on the critical line for

i2Trm)ll2^t^2irm, and has zeros off the line outside this interval.

The computations supporting this conjecture will be reported in full

in another paper.

2. Lemmas on x(s). We write D for d/ds and D„ for d/da.

Lemma 1.7/|*| = 10anda> 1/2 thenD.log11/xOO | >log|s| -1.93.

Proof. From Schoenfeld-Dixon [2], we have D„ log |l/xO)|

> log \s\ -|5|-1/2-|s|-712-|*|-75-(log27r+V(4sinh2(7rt/2)))
from which the lemma easily follows.

Lemma 2. If |*| ^10 and <r>l/2 then

|l/x0)| > .9646(| s[/(27r))ff-"2.

Proof. We have

(6) | 1/xW I   =  | 2t M 2 cos(x5/2) | | Vis) | .
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As shown in Spira [l],

(7) | 2 cos(jw/2) |   S; 2 sinh(7rZ/2) = ertl2 - e~^2 > .We*"2,

the last inequality holding for J 2; 10. Also from Spira [l] we have

(8) | T(s) |   = (27r)1'2e-' | 5 |»-i/2e-<«rg«| ei/a*t)+*i I

where |i?i| <|5|_1/6. It is easy to see that if \z\ <1, then \e'\ 2^1

-\z\ [l/(l-|z|)].Now|l/(125)4-i?i| <\s\-l/U + \s\-1/6=\s\-1/4

^1/40 if ttlO. Hence, setting z=l/(12s)+i?i,

(9) | ei/(w.)+si|   ^ 1 _  \z\ [1/(1 _  | z| )] 2: 38/39

the last inequality holding since \z\ <l/40. By elementary geometry

t(ir/2 — arg s) > a, so the lemma followsoncombiningequations (6)-(9).

3. The cases m = l, 2.

Theorem For m = l, 2 and \t\ sufficiently large, gm(s) has all its

complex zeros on a = 1/2.

Proof. For m = l we have gm(s) = lArx(s)> and for cr>l/2 and

\t\ >6.8, by Schoenfeld-Dixon [2], we have \gi(s)\ 2:1-|x(s) | >0.
An easy argument shows that gi(s) has exactly one zero in each Gram

interval.

For m = 2, |gm(5)|>:|l-r-2-'|-|x(5)|-|l4-2s-1|. and U*(*)| >°

provided

(10) I l/xf» I  > I (1 + 2-0/(1 4- 2-0 I .

On a=l/2 both sides of (10) are 1, so that proceeding as in Schoen-

feld-Dixon [2], (10) will hold provided

(11) D. log I l/x(s) I   > D„ log I (1 4- 2-0/(1 + 2-0 I •

Since (Schoenfeld-Dixon [2]) D,log \f(s)\ =Re D logf(s),

1 4- 2-1 r    1 4- 2"' 4- 2s"1   1
D. log  -   = log 2 Re   -

1 + 2- L(l + 2-0(1 + 2-0-1

I    1 4- 2-' 4- 2-1    I
< log 2 -

1(1 + 2-0(14-2-01
r   1 + 2~" + 2-1   n

g, log 2-
L(l - 2-0(1 - 2-0J

where we must now take l/2<o"<3/4 to obtain a bound on the de-

nominator. The numerator l+2~'r+2—* has a minimum at cr=l/2,
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and for l/2<o-<l rises monotonely from 1 + (2)1/2 to 2.5. The de-

nominator is 1.5 — (2—<r + 2tr—1) which is smallest at a = 3/4. Thus

D„\ log(l + 2-1)/(l + 2-) | < 2.5 log 2/[l.5-(2-3'4 + 2"1'*)] < 27.

Using Lemma 1, we need only choose \s\ so large that logpl >1.93

+ 27, i.e., t>e29.

For a> 3/4, we proceed directly from (10) using Lemma 2. We have

| (l+2"-1)/(l+2-0| ^(l + 2"-1)/(l-2-3/4) so that (10) will hold pro-

vided

(12) .9646( | s | /(2X))*-1'2 > (1 + 2'-0/(l - 2-3'4).

For 3/4^0-^1, the right hand side of (12) is bounded by 5, and an

easy calculation shows we need only take <>27r-64~8145. For <7>1,

l+2'-1<2", so (12) transforms to (| s\ /47r)"-1'2> (2)1'2/.376, which

will be valid if *>47r((2)1/2/.376)4<~805. This completes the proof of

the theorem of this section.

Since there is empirically a steady appearance of zeros off the

critical line for tra ̂ 3, it appears unlikely that one would be able to

extend the theorem of this section to any further m.
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