Using these estimates in (17), we see that

$$\log |F(z)| = \log |f(z)| + \log |p_n(z)| - \log \left|1 - \left(\frac{z}{r_n}\right)^{m_n}\right| + O(n).$$

Combined with the estimates (15) and (13) this shows that

$$\log |F(z)| \sim N(r)$$

outside small pits around the zeros.

REFERENCE

- 1. J. E. Littlewood and A. C. Offord, On the distribution of zeros and a-values of a random integral function. II, Ann. of Math. (2) 49 (1948), 885-952.
 - G. M. COLLEGE, SAMBALPUR, INDIA.

APPROXIMATE FUNCTIONAL APPROXIMATIONS AND THE RIEMANN HYPOTHESIS

ROBERT SPIRA

1. Introduction. Using the functional equation for the Riemann zeta function

$$\zeta(s) = \chi(s)\zeta(1-s)$$

where

(2)
$$1/\chi(s) = (2\pi)^{-s} 2 \cos(\pi s/2) \Gamma(s),$$

it was shown in Spira [1] that

(3)
$$\zeta(s) \neq 0$$
, $1/2 < \sigma < 1$, $t \geq 10$ implies $|\zeta(1-s)| > |\zeta(s)|$

where $s = \sigma + it$. Using similar but improved techniques, Schoenfeld and Dixon [2] strengthened the result (3) to assuming only $\sigma > 1/2$, $|t| \ge 6.8$ and $\zeta(s) \ne 0$. It easily follows from this inequality that the Riemann hypothesis is equivalent to the inequality $|\zeta(1-s)| > |\zeta(s)|$, $1/2 < \sigma < 1$, $t \ge 10$.

Consider now the formula for $\zeta(s)$ which gives rise to the approximate functional equation and the Riemann-Siegel formula:

Presented to the Society, January 24, 1966 under the title Zeros of approximate functional approximations; received by the editors August 6, 1965 and, in revised form, October 26, 1965.

(4)
$$\zeta(s) = g_m(s) + \frac{e^{i\pi s}\Gamma(1-s)}{2\pi i} \int_C \frac{w^{s-1}e^{-mw}}{e^w - 1} dw$$

where

(5)
$$g_m(s) = \sum_{n=1}^m n^{-s} + \chi(s) \cdot \sum_{n=1}^m n^{s-1}.$$

The $g_m(s)$ are the approximate functional approximations of the title, and, as noted implicitly by Titchmarsh ([4, p. 74]), they satisfy the same functional equation as $\zeta(s)$. Hence, just as in the case of the ζ -function, $g_m(s)$ has its zeros on the critical line for |t| > 6.8 if and only if $|g_m(1-s)| > |g_m(s)|$.

It is thus natural to write (4) in the form

$$\zeta(s) = g_m(s) + B$$

and study the location of the zeros of $g_m(s)$, (hopefully on the critical line), and attempt to carry the final conclusion of the Riemann hypothesis via the ideas of Rouché.

It is indeed possible to show that $g_1(s)$ and $g_2(s)$ have their zeros on the critical line (for t sufficiently large) and this proof is carried out in §3, with the aid of two lemmas in §2.

Massive calculations were undertaken to verify the hypothesis for $m \ge 3$, but these calculations instead revealed a remarkable scientific situation, which reinforces the possibility of using Rouché's theorem. The evidence strongly suggests the conjecture: If $m \ge 3$, and s is in the critical strip, then $g_m(s)$ has its zeros on the critical line for $(2\pi m)^{1/2} \le t \le 2\pi m$, and has zeros off the line outside this interval. The computations supporting this conjecture will be reported in full in another paper.

2. Lemmas on $\chi(s)$. We write D for d/ds and D_{σ} for $\partial/\partial\sigma$.

LEMMA 1. If
$$|t| \ge 10$$
 and $\sigma > 1/2$ then $D_{\sigma} \log |1/\chi(s)| > \log |s| - 1.93$.

PROOF. From Schoenfeld-Dixon [2], we have $D_{\sigma} \log |1/\chi(s)| > \log |s| - |s|^{-1/2} - |s|^{-2/12} - |t|^{-3/5} - (\log 2\pi + \pi/(4 \sinh^2(\pi t/2)))$ from which the lemma easily follows.

LEMMA 2. If $|t| \ge 10$ and $\sigma > 1/2$ then

$$|1/\chi(s)| > .9646(|s|/(2\pi))^{\sigma-1/2}.$$

Proof. We have

As shown in Spira [1],

(7)
$$\left| 2 \cos(\pi s/2) \right| \ge 2 \sinh(\pi t/2) = e^{\pi t/2} - e^{-\pi t/2} > .99 e^{\pi t/2},$$

the last inequality holding for $t \ge 10$. Also from Spira [1] we have

(8)
$$|\Gamma(s)| = (2\pi)^{1/2} e^{-\sigma} |s|^{\sigma-1/2} e^{-t \arg s} |e^{1/(12s)+R_1}|$$

where $|R_1| < |s|^{-1}/6$. It is easy to see that if |z| < 1, then $|e^z| \ge 1$ -|z| [1/(1-|z|)]. Now $|1/(12s)+R_1| < |s|^{-1}/12+|s|^{-1}/6=|s|^{-1}/4$ $\le 1/40$ if $t \ge 10$. Hence, setting $z = 1/(12s)+R_1$,

(9)
$$|e^{1/(12s)+R_1}| \ge 1 - |z|[1/(1-|z|)] \ge 38/39$$

the last inequality holding since |z| < 1/40. By elementary geometry $t(\pi/2 - \arg s) > \sigma$, so the lemma follows on combining equations (6)–(9).

3. The cases m=1, 2.

THEOREM For m=1, 2 and |t| sufficiently large, $g_m(s)$ has all its complex zeros on $\sigma=1/2$.

PROOF. For m=1 we have $g_m(s)=1+\chi(s)$, and for $\sigma>1/2$ and |t|>6.8, by Schoenfeld-Dixon [2], we have $|g_1(s)|\geq 1-|\chi(s)|>0$. An easy argument shows that $g_1(s)$ has exactly one zero in each Gram interval.

For m=2, $|g_m(s)| \ge |1+2^{-s}| - |\chi(s)| \cdot |1+2^{s-1}|$, and $|g_2(s)| > 0$ provided

(10)
$$|1/\chi(s)| > |(1+2^{s-1})/(1+2^{-s})|.$$

On $\sigma = 1/2$ both sides of (10) are 1, so that proceeding as in Schoenfeld-Dixon [2], (10) will hold provided

(11)
$$D_{\sigma} \log |1/\chi(s)| > D_{\sigma} \log |(1+2^{s-1})/(1+2^{-s})|.$$

Since (Schoenfeld-Dixon [2]) $D_{\sigma} \log |f(s)| = \text{Re } D \log f(s)$,

$$D_{\sigma} \log \left| \frac{1 + 2^{s-1}}{1 + 2^{-s}} \right| = \log 2 \operatorname{Re} \left[\frac{1 + 2^{-s} + 2^{s-1}}{(1 + 2^{-s})(1 + 2^{s-1})} \right]$$

$$\leq \log 2 \left| \frac{1 + 2^{-s} + 2^{s-1}}{(1 + 2^{-s})(1 + 2^{s-1})} \right|$$

$$\leq \log 2 \left[\frac{1 + 2^{-\sigma} + 2^{\sigma-1}}{(1 - 2^{-\sigma})(1 - 2^{\sigma-1})} \right]$$

where we must now take $1/2 < \sigma < 3/4$ to obtain a bound on the denominator. The numerator $1+2^{-\sigma}+2^{\sigma-1}$ has a minimum at $\sigma=1/2$,

and for $1/2 < \sigma < 1$ rises monotonely from $1+(2)^{1/2}$ to 2.5. The denominator is $1.5-(2^{-\sigma}+2^{\sigma-1})$ which is smallest at $\sigma=3/4$. Thus $D_{\sigma}|\log(1+2^{s-1})/(1+2^{-s})| < 2.5\log 2/\left[1.5-(2^{-3/4}+2^{-1/4})\right] < 27$. Using Lemma 1, we need only choose |s| so large that $\log|s| > 1.93 + 27$, i.e., $t > e^{29}$.

For $\sigma > 3/4$, we proceed directly from (10) using Lemma 2. We have $\left| (1+2^{s-1})/(1+2^{-s}) \right| \le (1+2^{\sigma-1})/(1-2^{-3/4})$ so that (10) will hold provided

$$(12) .9646(|s|/(2\pi))^{\sigma-1/2} > (1+2^{\sigma-1})/(1-2^{-8/4}).$$

For $3/4 \le \sigma \le 1$, the right hand side of (12) is bounded by 5, and an easy calculation shows we need only take $t > 2\pi \cdot 6^4 \sim 8145$. For $\sigma > 1$, $1+2^{\sigma-1} < 2^{\sigma}$, so (12) transforms to $(|s|/4\pi)^{\sigma-1/2} > (2)^{1/2}/.376$, which will be valid if $t > 4\pi((2)^{1/2}/.376)^4 \sim 805$. This completes the proof of the theorem of this section.

Since there is empirically a steady appearance of zeros off the critical line for $m \ge 3$, it appears unlikely that one would be able to extend the theorem of this section to any further m.

REFERENCES

- 1. Robert Spira, An inequality for the Riemann zeta function, Duke Math. J. 32 (1965), 247-250.
- 2. R. D. Dixon and Lowell Schoenfeld, On the size of the Riemann zeta-function at places symmetric with respect to the point 1/2, Duke Math. J. (to appear).
- 3. D. H. Lehmer, Extended computation of the Riemann zeta-function, Mathematika 3 (1956), 102-108.
- 4. E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford at the Clarendon Press, 1951.
 - 5. Robert Spira, Zeros of sections of the zeta function, (to appear).

University of Tennessee