
ON WEAKLY COMPACT SUBSETS OF BANACH SPACES

H. H. CORSON1 AND J. LINDENSTRAUSS2

Introduction. The two sections of this note are independent, but

they are related by the fact that both use the results of [5 ] to obtain

information on the properties of weakly compact sets in Banach

spaces.

In the first section we prove some results on a class of compact sets

which is believed to include all weakly compact subsets of Banach

spaces. We are interested in the properties of the nonmetrizable sets

of this form. (Our results become trivial in the metrizable case.) We

show in particular that such sets have a dense subset consisting of

Gt points. Weakly compact sets are known to possess many properties

which are similar to those of metrizable spaces (Eberlein's Theorem,

for example). Our result exhibits a new property of this kind.

In the second section we show that in a separable reflexive space,

every weakly compact set is the intersection of finite unions of cells.

1. Compact subsets of Co(T). Let T be a discrete set and let C0(r)

be the space of real-valued functions on T which vanish at oo. (A

function/from T to the reals R is said to vanish at e° if {y; \fiy) \ > e}

is finite for every e>0.) In C0(r) we take the topology of pointwise

convergence. We can consider C0(r) also as a Banach space by taking

the usual sup norm. The topology of pointwise convergence is weaker

than the w-topology of the Banach space C0(r). A compact subset A

of C0(r) need not be norm bounded, and therefore it might fail to be

compact in the w-topology. However, it is easily seen that such a set

K is linearly homeomorphic to a w-compact subset of Co(F). (Take a

homeomorphism <f> of the form <j>fiy) = X7/(7), /ECo(T), 7Er, where

the Xr are suitable positive numbers.)

We conjecture that the compact subsets of Co(T) are not only

examples of weakly compact subsets of a Banach space but that every

weakly compact subset of a Banach space is homeomorphic (per-

haps even linearly homeomorphic) to a subset of C0(r) for some suita-

ble r. It is clear that every metrizable weakly compact subset of a

Banach space is linearly homeomorphic to a subset of C0(A) (A=the

integers).  Moreover, if there exists a bounded linear operator T

which is one to one from a Banach space X into some C0(r), then T

maps the weakly compact subsets of X homeomorphically onto corn-
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pact subsets of C0(T). For a large class of Banach spaces X it is known

that there exists an operator T having the properties described above.

For example, this is the case if X = Lp(p), when l^p<°o and p is an

arbitrary measure, or if p= w and p is a <r-finite measure (cf. [l] for

details). If p is not a-finite then Lx(p) cannot be mapped continuously

and linearly in a one to one manner into some C0(r) (this follows

from the results of Day [3]), but we conjecture that on w-compact

subsets of Lx(p), which are in a sense small sets, such a mapping al-

ways exists. In this connection see also [7].

The compact subsets of C0(r) arise naturally in many problems,

and in [l] and [2] our main results deal with some properties of

these sets. Our first theorem here is applied in [2] for extending some

results, which were known to be true for metrizable compact sets, to

the more general class of compact subsets of C0(r).

In the statement of Theorem 1 we use the following notation. Let

K be a compact Hausdorff space. The space of real-valued continuous

functions on K with the sup norm is denoted by C(K). The unit cell

{p; \\p\\^l} of the dual C(K)* of C(K) is denoted by 2(K).

Theorem 1. Let K be a compact Hausdorff space. The set 2(7Q,

taken in the w*-topology, is linearly homeomorphic to a subset of Co(T)

for some set V if and only if K is homeomorphic to a subset of C0(T)

for some T.

Proof. As is well known, K is homeomorphic to a subset of 2(isT),

and therefore the "only if" part of the theorem is trivial.

Now let K be a compact subset of Co(r) for some discrete space V.

Without loss of generality we may assume that | £(7) | ^ 1/2 for every

kEK and 7£T. (If K does not already satisfy this, we replace K by

<pK where <p is a homeomorphism of the type described in the begin-

ning of the section.)

Let £2 be the set of all finite subsets of T. To each a= {71,72, • • -,7B}

in fi let fa be the element of C(K) defined by fa(k)=k(yi)k(y2) ■ • •

k(yn)- (If a — 0 then fa(k) = 1 for every k.) It is easy to check that,

for every fixed kEK- and every e>0, the number of a£fi such that

\fa(k) I > e is finite. Thus, for every sequence of distinct elements

ai, a2, • • • in fi and every kEK, limi^,fai(k)—0. Since the/, are

uniformly bounded (by 1), we get that, for every finite measure p on

K, fKfai(k)dp(k)-+0 as i—><x>. Consequently, we can define a map

P:2(70->C0(fi) by

T(p)(a) = p(fa) =   f fa(k)dp(k),        a £ fi.
J K
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Clearly T is a continuous affine map. That T is one to one follows

from the fact that the linear combinations of the fa,aE&, are norm

dense in C(A) (by the Stone-Weierstrass Theorem). Since 2(A) is

7£/*-compact, it follows that T is a homeomorphism.

Corollary. Let K be a compact subset of CoiT) for some set V. Then

the Banach space C(A) is isomorphic to a smooth Banach space. (4

Banach space is called smooth if, for every xEX with ||x|| = 1, there is

exactly one x*£l* such that ||x*|j =x*(x) = 1.)

Proof. Let T be the map from C(A)* into C0(fl) constructed in the

proof of Theorem 1. In [3] Day constructed a norm |||-||| in C0(Q)

which is equivalent to the sup norm of C0(O) and in which C0(Q) is

strictly convex. Define a norm |||-|||o in C(A)* by |||m|||o = |||Pm|||

+ ||ju|| where I -l| is the usual norm in C(A)*. It is easily checked that

the set {p.; | |/x|||o2§l} is w*-compact. Hence, by standard duality

arguments (cf. [3]), the norm

|||/|||x = sup{|K/)|;|||/*|||o£l},      /eC(A),

is equivalent to the sup norm, and C(A) with the norm |||-|||i is a

smooth Banach space.

Another result which can be proved by using Theorem l(as well as

results from [3] and [5]) is

Theorem 2. Let K be a compact subset of Co(T). Then the Gg points

of K form a dense subset of K.

Before proving Theorem 2, it is useful to collect some pertinent

facts. A point xEA is called a c7j point if it is the intersection of a

sequence of open subsets of K. It is well known and easily checked

that a point x in a compact space is a G5 point iff x has a countable

base of neighborhoods. Another simple and well known character-

ization of Gi points (in a normal space) is the following. A point xEA

is a G;, point iff there exists a continuous real-valued function / on

A such that/(x) = l and/(y)<l if y^x. Thus, in particular, every

exposed point of a compact convex set A in a linear topological space

is a Gs point. (A point xEA is called an exposed point if there exists

a continuous linear functional / on the space such that /(x) = 1 and

fiy) <1 if X9^yEK-) For the proof of Theorem 2 we need the follow-
ing Lemma.

Lemma 1. A w-compact convex subset K of C0(r) is the closed convex

hull of its exposed points.

Proof of Lemma 1. The proof of Theorem 1 of [5] shows that, if A
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is a weakly compact convex subset of a Banach space X and if Y is

another Banach space, then the set P(K, F)= {P;||7x|| = sup„eK;||P«||

for some xEK} is a dense subset of the Banach space B(X, Y) =the

space of all bounded linear operators from X to Y with the usual

operator norm (||p|| =supuxosi IIP^II)-

The proof of Theorem 2 of [5] shows that, if

(1) K is a symmetric convex closed subset of a Banach space X,

(2) X is isomorphic to a strictly convex Banach space Y,

(3) P(K, Y) is norm dense in B(X, Y),

then K is the closed convex hull of its exposed points.

Since C0(r) is isomorphic to a strictly convex space (cf. [3]), it

follows that every symmetric w-compact convex subset of C0(r) is the

closed convex hull of its exposed points.

If Ti is a nonsymmetric compact convex subset of Co(r), consider

the subset 7C0CCo(r)©P which is the convex hull of

{(k, I); k E K} V {(-k, - I); k E K}.

We have already proved that K0 is the closed convex hull of its ex-

posed points. The fact that the same is true for K is an easy conse-

quence.

Proof of Theorem 2. By Theorem 1 and Lemma 1 the set 2(7£)

is the w*-closed convex hull of its exposed points. By a theorem of

Milman [4, p. 80] it follows that the exposed points of 2(7£) are

dense in the extreme points of 2(iT). The extreme points of 2(i£) are

of the form +\px where xpx is the evaluation at x(\f/x(f) =/(x),/£C(K),

xEK). It is clear that \px is an exposed point of 2(7C) iff x is a Gt point

of K. This concludes the proof.

Remarks. 1. An extreme point of a convex w-compact set K in a

Banach space need not be a Gs point of K in the w-topology. Take for

example as K the positive part of the unit cell of l2(T) with V un-

countable: K = {x E h(F); x(y) ^ 0 for every y and *L7x2(y) ̂  1).

The origin is an extreme point of K but not a Gi point.

2. There exist non-metrizable compact subsets K of C0(r) which

are first countable (i.e. every point of K is a C7{ point). Take for

example T= [0, l], and let K be the set consisting of the points x7,

7£[0, l], and y7, yE[0, l], where the xT and y7 are defined by

x7(0) = 7,        xy(a) = 0,    if a 9* 0,

-v7(0) = 7,     yy(y) = i,     yM = o,  if a 9* 0,7.

2. Representation of w-compact subsets of separable reflexive

spaces. The theorem we prove in this section is somewhat related to

the work of Phelps [6].
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Theorem 3. Let X be a separable reflexive Banach space. A subset

K of X is w-compact if and only if it is the intersection of finite unions

of cells.

The proof of this theorem is based on the following result [5,

Theorem 4b].

Lemma 2. Let X be as in Theorem 3, then the strongly smooth points

are norm dense in the boundary of the unit cell of X. (4 point x with

||x||=l is called strongly smooth if there is an x*EX* with ||x*||

= x*(x) = l such that ||x+y|| =l+x*(y)+o(||y||) as ||y||-^0.)

Proof of Theorem 3. In this proof we shall denote the cell

{x; ||x — x0|| ^=r} by 5(x0, r). Since every cell in a reflexive space is

w-compact, the "if" part of the theorem is trivial. Hence it is enough

to prove that every w-closed subset of 5(0, 1) is the intersection of

finite unions of cells. Let r be the topology on 5(0, 1) in which the

closed sets are exactly the intersections of finite unions of cells. The

topology t is weaker than the w-topology. Since 5(0, 1) is w-compact,

our theorem will be proved once it is shown that r is a Hausdorff

topology.

We shall prove the following assertion which is slightly stronger

than the assertion that r is a Hausdorff topology.

(#) Let yij£y2 be two points in 5(0, 1). Then there exist two cells

5(xi, r/) and 5(x2, r2) in X such that y,-€E5(x,-, r,), *=1, 2, and such

that

5(x,, n) U Six*, r2) D 5(0, 1).

Let z = yi— y2 and let u be a strongly smooth point of 5(0, 1) with

(i) ll«-*/IMIII <i     IMI-i
(cf. Lemma 2). Now put

x" = y2 - (ra - 2||0||/3)ra,    x\ = y, + (ra - 2||a||/3)«,    ra = 1, 2, • • •.

For every n

||*i-yi|| =||Z+(ra-2||2||/3>||

^||(ra + |H|/3)ra||-||2||||«-2/|NI||>«.

Similarly, HxJ—y2|| >ra for every ra. Hence, in order to prove (#) we

have only to show that for some integer ra,

(2) 5(*r,ra)U5(x2,ra)D5(0, 1).
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Suppose that (2) is false. Then for every n there is a 2"£5(0, 1)

such that

||z» - y, + (» - 2||a||/3)«|| = »    and   ||a» - yx - (» - 2||z||/3)«|| ^ »,

or equivalently

||«+(2"-y2-2||z||«/3)/w||^l    and   ||M+(y1-zn-2||z||w/3)A|| = 1-

Since u is a strongly smooth point, there is a w*£X* with w*(w)

= ||«*|| =1 and such that as w—>oo

w*(z" - y2 - 2||z||«/3) ^ o(l)    and    «*(y, - z» - 2||z||«/3) ^ o(l).

Adding these two inequalities we get that

(3) 0 ^ u*(yi -y2- 4||a||«/3) = «*(«) - 4||z||«*(«)/3.

On the other hand we have that u*(z) ^||z|| and this contradicts (3).

We have thus proved that (2) holds, and this concludes the proof of

the theorem.

Remarks. 1. It is not true in general that a set in a conjugate sepa-

rable Banach space is w*-compact if and only if it is the intersection

of finite unions of cells. For example the subset K of h = c* defined by

K= {x£/i; x(l) ^0, ||x|| ^l} is w*-compact, but it cannot be repre-

sented as the intersection of finite union of cells. In fact, it is easily

verified that every finite union of cells in lx which contains the set K

already contains the whole unit cell of h.

2. We do not know whether Theorem 3 will hold if we drop the

assumption that X is separable.
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