A NOTE ON SPLITTING IN SOLVABLE GROUPS¹

ERNEST E. SHULT

1. Introduction. The theorem presented below generalizes theorems of E. Schenkman [5] and G. Higman [4] concerning splitting in finite solvable groups. This generalization is achieved by applying results from the theory of formations recently developed by W. Gaschütz [2], [3]. All groups considered here are finite and solvable. A formation, \mathfrak{F} , is a collection of groups closed under taking homomorphisms and subdirect products. It follows that every group, G, contains a characteristic subgroup, $G_{\mathfrak{F}}$, minimal with respect to the property that $G/G_{\mathfrak{F}} \subset \mathfrak{F}$. A formation, \mathfrak{F} , is called saturated, if $G/\phi(G) \subset \mathfrak{F}$ implies $G \subset \mathfrak{F}$ for all G (see [3]). F is called an \mathfrak{F} -subgroup of G if $F \subset \mathfrak{F}$ and if $F \subseteq H \subseteq G$ implies $FH_{\mathfrak{F}} = H$. A theorem of Gaschütz [2], states that if \mathfrak{F} is saturated, \mathfrak{F} -subgroups of G always exist and are conjugate in G.

THEOREM. Let \mathfrak{F} be a saturated formation and suppose that for a finite solvable group, G, $G_{\mathfrak{F}}$ is abelian. Then:

- (i) the F-subgroups of G complement $G_{\mathfrak{F}}$.
- (ii) all complements of $G_{\mathfrak{F}}$ in G are conjugate and hence are \mathfrak{F} -subgroups of G.

Let $L_0(G) = G$ and let $L_i(G)$ be the *i*th term of the lower nilpotent series of G. If \mathfrak{F} denotes the formation of groups having nilpotent length $\leq k-1$, the theorem yields a theorem of Higman [4] which states that if $L_k(G)$ is abelian, G splits over $L_k(G)$ and all complements of $L_k(G)$ in G are conjugate. (This statement becomes a theorem of Schenkman [5] when k=2.) R. Carter [1] was able to identify the complements in Higman's theorem as the relative system normalizers of $L_{k-1}(G)$ in G. From (ii) we may also identify them as the \mathfrak{F} -subgroups of G (or as the Carter subgroups of G when k=2). Our theorem yields a number of other interesting results on splitting when \mathfrak{F} ranges over various saturated formations, for example, groups having nilpotent commutator subgroups, supersolvable groups, groups G, for which G/G' is a π -group, etc.

2. Preliminary results and proof of the theorem. Our proof employs a number of basic results of Gaschütz. First if F is an F-subgroup

Received by the editors March 1, 1965.

¹ This work was supported by a National Science Foundation grant while the author was at the University of Illinois, Summer, 1964.

of G, $F \subseteq H \subseteq G$ implies that F is an \mathfrak{F} -subgroup of H. Also if N is normal in G, FN/N is an \mathfrak{F} -subgroup of G/N and every \mathfrak{F} -subgroup of G/N has the form F_0N/N where F_0 is an \mathfrak{F} -subgroup of G. Let π and π' denote a partition of the set of primes. $O_{\pi'}(G)$ denotes the maximal normal π' -subgroup of G and $O_{\pi'\pi}(G)$ denotes the subgroup of G for which $O_{\pi'\pi}(G)/O_{\pi'}(G)$ is the maximal normal π -subgroup of $G/O_{\pi'}(G)$. A formation, \mathfrak{F} , is said to be locally defined if for some sequence of (possibly empty) formations, f(p), p ranging over the primes, $G \subseteq \mathfrak{F}$ if and only if $p \nmid |G|$ when f(p) is empty and $G/O_{p'p}(G) \subseteq f(p)$ otherwise. Gaschütz proved [2] that all locally defined formations are saturated and recently has announced the important result that, conversely, all saturated formations are locally defined by some sequence of local formations $\{f(p)\}$.

PROOF OF THE THEOREM. (i) If $G_{\mathfrak{F}}=E$, G is its own \mathfrak{F} -subgroup and the theorem is trivial. Suppose then that $G_{\mathfrak{F}}\neq E$. Let F be an \mathfrak{F} -subgroup of G. Since $FG_{\mathfrak{F}}=G$, to prove (i) it suffices to show that $F\cap G_{\mathfrak{F}}=E$. Suppose $F\cap G_{\mathfrak{F}}\neq E$. Then since $G_{\mathfrak{F}}$ is abelian, $F\cap G_{\mathfrak{F}}$ is normal in G. Let N be a minimal normal subgroup of G. Then $(G/N)_{\mathfrak{F}}=G_{\mathfrak{F}}N/N$ is abelian and FN/N is an \mathfrak{F} -subgroup of G/N. By induction, $FN\cap G_{\mathfrak{F}}N\subseteq N$. Thus $F\cap G_{\mathfrak{F}}$ lies in every minimal normal subgroup of G. It follows that $F\cap G_{\mathfrak{F}}=N_0$, is the unique minimal normal subgroup of G.

Suppose $N_0 = G_{\mathfrak{F}}$. Then $G = FN_0 = F \in \mathfrak{F}$ whence $G_{\mathfrak{F}} = E$, a contradiction. Hence $N_0 \subset G_{\mathfrak{F}}$.

Suppose $F \subset H \subset G$. Then $HG_{\mathfrak{F}} = G$ and so $G/G_{\mathfrak{F}} \simeq H/(H \cap G_{\mathfrak{F}}) \in \mathfrak{F}$ whence $H_{\mathfrak{F}} \subset G_{\mathfrak{F}}$. Since $H_{\mathfrak{F}}$ is now forced to be abelian and F is an \mathfrak{F} -subgroup of H, $F \cap H_{\mathfrak{F}} = E$ by induction on H. On the other hand the fact that $G_{\mathfrak{F}}$ is abelian implies $H_{\mathfrak{F}}$ is normal in G and hence $H_{\mathfrak{F}} \cap F$ contains N_0 , a contradiction. Thus F is maximal in G and $G_{\mathfrak{F}}/N_0$ and N_0 are successive chief factors of G. From the uniqueness of N_0 , $G_{\mathfrak{F}}$ is an abelian p-group.

Let Q be a p'-subgroup of G such that $QG_{\mathfrak{F}}$ is normal in G. Then, since $G_{\mathfrak{F}}$ is abelian, $G_{\mathfrak{F}} = C_{G_{\mathfrak{F}}}(Q) \times [Q, G_{\mathfrak{F}}]$ where each component is normal in G. Suppose $[Q, G_{\mathfrak{F}}] \neq G_{\mathfrak{F}}$. Then uniqueness of N_0 implies $C_{G_{\mathfrak{F}}}(Q) = G_{\mathfrak{F}}$ and Q is then normal in G. Because of the uniqueness of N_0 , Q = E. Thus if $QG_{\mathfrak{F}}\Delta G$ either Q = E or $G_{\mathfrak{F}} = [Q, G_{\mathfrak{F}}]$.

Choose B_q so that $B_q/N_0 = O_{q'q}(G/N_0)$, and set $T_q = O_{q'q}(F)$. We shall show that $T_q \subseteq B_q$.

Suppose $q \neq p$. Then $G_{\mathfrak{F}} \subseteq O_{q'}(G)$, and $T_qG_{\mathfrak{F}}$ is q-nilpotent and normal in G. Hence $T_qG_{\mathfrak{F}} \subseteq O_{q'q}(G) \subseteq B_q$.

² Communicated at the Michigan Conference of Finite Groups, March, 1964.

Suppose q = p. Set $Q_0 = O_{p'}(F)$. Since $Q_0G_{\mathfrak{F}}$ is normalized by both F and $G_{\mathfrak{F}}$, it is normal in G. By a previous remark, if $Q_0 \neq E$, $G_{\mathfrak{F}} = [Q_0, G_{\mathfrak{F}}]$. But the latter is impossible since $Q_0 \subseteq O_{p'}(F)$ and $N_0 \subseteq O_p(F)$ imply $[Q, N_0] = E$. Thus $Q_0 = E$. As a result, $T_p = O_p(F)$ and $T_pG_{\mathfrak{F}}$, being normalized by F and $G_{\mathfrak{F}}$, lies in $O_p(G) \subseteq B_p$. Hence $T_p \subseteq B_p$.

Since \mathfrak{F} is saturated, we may assume \mathfrak{F} is locally defined by $\{f(p)\}$. Thus $F \in \mathfrak{F}$ implies $F/T_q \in \mathfrak{f}(q)$ for each prime q dividing |F|. Since $T_q \subseteq B_q$, it follows that $G/B_q \simeq F/(F \cap B_q)$ is a homomorphic image of F/T_q . Thus $G/B_q \in \mathfrak{f}(q)$ for each prime, q, dividing $[G:N_0]$. Since \mathfrak{F} is locally defined by $\{\mathfrak{f}(q)\}$, $G/N_0 \in \mathfrak{F}$ whence $G_{\mathfrak{F}} \subseteq N_0$, a contradiction, and (i) is proved.

(ii) In proving the second part of the theorem it suffices to show that every complement, K, of $G_{\mathfrak{F}}$ in G, is an \mathfrak{F} -subgroup of G. Again, there is nothing to prove if $G_{\mathfrak{F}} = E$. We suppose that $G_{\mathfrak{F}} \neq E$. Let K be an arbitrary complement of $G_{\mathfrak{F}}$ in G and choose N minimal normal in G contained in $G_{\mathfrak{F}}$. Then $KN \cap G_{\mathfrak{F}} = (K \cap G_{\mathfrak{F}})N = N$ so KN/N is a complement of $G_{\mathfrak{F}}/N = (G/N)_{\mathfrak{F}}$ in G/N. By induction KN/N is an \mathfrak{F} -subgroup of G/N and so KN = FN where F is an \mathfrak{F} -subgroup of G.

Suppose $N \subset G_{\mathfrak{F}}$. Then $KN = FN \subset G$. Now from (i), $F \cap N \subseteq F \cap G_{\mathfrak{F}} = E$ and so $F \subset FN$. Consequently, $(FN)_{\mathfrak{F}}$, being a nontrivial characteristic subgroup of N must coincide with N. Since K complements $(KN)_{\mathfrak{F}} = N$ in KN, induction on KN yields that K is an \mathfrak{F} -subgroup of KN. Since F is an \mathfrak{F} -subgroup of KN as well as G, K and F are conjugate in KN. Thus K is an \mathfrak{F} -subgroup of G.

Suppose $N = G_{\mathfrak{F}}$. Then $K \in \mathfrak{F}$ and K is maximal in G. Under these circumstances K satisfies the defining properties of an \mathfrak{F} -subgroup of G.

References

- 1. R. Carter, Splitting properties of soluble groups, J. London Math. Soc. 36 (1961), 89-94.
- 2. W. Gaschütz, Zur Theorie der endlichen auflösbaren Gruppen, Math. Z. 80 (1963), 300-305.
- 3. W. Gaschütz and U. Lubeseder, Kennzeichnung gesättigter Formationen, Math. Z. 82 (1963), 198-199.
- 4. G. Higman, Complementation of Abelian normal subgroups, Publ. Math. Debrecen 4 (1956), 455-458.
- 5. E. Schenkman, The splitting of certain solvable groups, Proc. Amer. Math. Soc. 6 (1955), 286-290.

SOUTHERN ILLINOIS UNIVERSITY