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1. Result. Let A he an Hadamard design of type 1, and let (X, Y, Z)

denote the direct product of matrices X, Y and Z (the direction of

the product is unimportant here). Later we shall show that

73 = (7, A, J) + (/, 7, A) + (A, J, I)

+ (A, A, A) + (A, AT, A*) + (A^ A, 4') + (A*, A*, A)

is also an Hadamard design of type 1. This construction will prove

the theorem:

Theorem. If there is an Hadamard matrix of type 1 and order h,

then there is an Hadamard matrix of type 1 and order (h—1)3 + 1.

Williamson [2] shows that there exist Hadamard matrices of type

1 for all orders

a)   2(p7 + i)-..(p;+i)\ a'r = 0'1,2:\"'
'      a\, • • ■ , ar — 1, 6, o, ■ • • ,

where each pi is a prime congruent to 3 modulo 4.

For example, an Hadamard matrix of type 1 and order 16 exists.

By our theorem, one also exists of order 153 + 1 = 16-211, which is

not one of the numbers (1). However, another construction of Wil-

liamson [2] yields an Hadamard matrix (not of type 1) for this order.

The first "new" order is 393 + l.

2. Definitions and proof. Throughout this paper 7 and / denote

the identity matrix and the matrix with 1 in every position respec-

tively, of the order required by the context. An a, b matrix is one

in which each element is either a or b.

An Hadamard matrix is a 1, —1 matrix 77 of order h such that

HHT = hI. (Necessarily either h = 2 or h is divisible by 4.) It is of

type 1 if 77+77r = 27.

An Hadamard design A is a 0, 1 matrix of order h — \ such that

AAT = ATA = (/j/4)7+(V4-1)J. (Necessarily^ J = JA = (h/2-\)J.)
It is of type 1 if A+AT = J-I.

If 77 is an Hadamard matrix it can be multiplied by generalized

permutation matrices to bring it into the form
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1     1 ...   1

-1

•    J - 2A   '

-1

where A is an Hadamard design. Then H is of type 1 if and only if

A is of type 1.

To prove that B is a 0, 1 matrix we write it in the form

B = (I, X) + (A, Y) + (A', Z)

where (P, Q) denotes the direct product of P and Q, and

X= (I,A) + (A,J),

Y = (1,1+ A) + (A,I+ A) + (A*, I + A^,

Z = (7, A) + (A, A^ + (AT, A).

Since I, A and AT are mutually disjoint we need only show that

X, Y and Z are 0, 1 matrices. And the same reasoning, applied to

each, confirms this.

To prove that B-\-BT = J — I we need only note that

X + XT = J - I   and    F + ZT = YT + Z = /.

It remains to prove that BBT is a linear combination of I and J.

This is straightforward algebraic manipulation. First

BBT = rI} u) + fA> v + (n - \)W) + (AT, VT + (n - 1)W)

where

U = XXT + (2m - l)(FFr + ZZT),

V = XZT+ YXT + ZYT,

W = (F + Z)(F + Z)r

and n = ft/4. Evaluating U, V and IF we obtain

U = ml + (m- \)J,

V = - (n - 1)(4» - 1)7 + 6»(2w - 1)/ + (n - \)(I, J),

W = (An- 1)1 + (in - \)2J - (I, J),

where m = ((ft — l)3 + l)/4. It follows that

BBT = ml + (m- \)J.

This completes the proof of the theorem.
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It is clear that three different Hadamard designs of type 1 of the

same order can be used in constructing B. However, all attempts to

apply this method using designs of different orders, have failed.
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