HADAMARD MATRICES OF ORDER CUBE PLUS ONE

K. GOLDBERG

1. Result. Let A be an Hadamard design of type 1 , and let (X, Y, Z) denote the direct product of matrices X, Y and Z (the direction of the product is unimportant here). Later we shall show that

$$
\begin{aligned}
B= & (I, A, J)+(J, I, A)+(A, J, I) \\
& +(A, A, A)+\left(A, A^{T}, A^{T}\right)+\left(A^{T}, A, A^{T}\right)+\left(A^{T}, A^{T}, A\right)
\end{aligned}
$$

is also an Hadamard design of type 1. This construction will prove the theorem:

Theorem. If there is an Hadamard matrix of type 1 and order h, then there is an Hadamard matrix of type 1 and order $(h-1)^{3}+1$.

Williamson [2] shows that there exist Hadamard matrices of type 1 for all orders

$$
\left.2^{a}\left(p_{1}^{a_{1}}+1\right) \cdots\left(p_{r}^{a_{r}}+1\right)\right\} \begin{align*}
& a, r=0,1,2, \cdots, \tag{1}\\
& a_{1}, \cdots, a_{r}=1,3,5, \cdots,
\end{align*}
$$

where each p_{i} is a prime congruent to 3 modulo 4 .
For example, an Hadamard matrix of type 1 and order 16 exists. By our theorem, one also exists of order $15^{3}+1=16 \cdot 211$, which is not one of the numbers (1). However, another construction of Williamson [2] yields an Hadamard matrix (not of type 1) for this order. The first "new" order is $39^{3}+1$.
2. Definitions and proof. Throughout this paper I and J denote the identity matrix and the matrix with 1 in every position respectively, of the order required by the context. An a, b matrix is one in which each element is either a or b.

An Hadamard matrix is a $1,-1$ matrix H of order h such that $H H^{T}=h I$. (Necessarily either $h=2$ or h is divisible by 4.) It is of type 1 if $H+H^{T}=2 I$.

An Hadamard design A is a 0,1 matrix of order $h-1$ such that $A A^{T}=A^{T} A=(h / 4) I+(h / 4-1) J$. (Necessarily $\left.A J=J A=(h / 2-1) J.\right)$ It is of type 1 if $A+A^{T}=J-I$.

If H is an Hadamard matrix it can be multiplied by generalized permutation matrices to bring it into the form

Presented to the Society, April 14, 1960; received by the editors February 12, 1964.

$$
\left(\begin{array}{rl}
1 & 1 \ldots 1 \\
-1 & \\
\vdots & J-2 A \\
-i &
\end{array}\right)
$$

where A is an Hadamard design. Then H is of type 1 if and only it A is of type 1 .

To prove that B is a 0,1 matrix we write it in the form

$$
B=(I, X)+(A, Y)+\left(A^{T}, Z\right)
$$

where (P, Q) denotes the direct product of P and Q, and

$$
\begin{aligned}
X & =(I, A)+(A, J) \\
Y & =(I, I+A)+(A, I+A)+\left(A^{T}, I+A^{T}\right) \\
Z & =(I, A)+\left(A, A^{T}\right)+\left(A^{T}, A\right)
\end{aligned}
$$

Since I, A and A^{T} are mutually disjoint we need only show that X, Y and Z are 0,1 matrices. And the same reasoning, applied to each, confirms this.

To prove that $B+B^{T}=J-I$ we need only note that

$$
X+X^{T}=J-I \quad \text { and } \quad Y+Z^{T}=Y^{T}+Z=J .
$$

It remains to prove that $B B^{T}$ is a linear combination of I and J. This is straightforward algebraic manipulation. First

$$
B B^{T}=(I, U)+(A, V+(n-1) W)+\left(A^{T}, V^{T}+(n-1) W\right)
$$

where

$$
\begin{aligned}
U & =X X^{T}+(2 n-1)\left(Y Y^{T}+Z Z^{T}\right), \\
V & =X Z^{T}+Y X^{T}+Z Y^{T}, \\
W & =(Y+Z)(Y+Z)^{T}
\end{aligned}
$$

and $n=h / 4$. Evaluating U, V and W we obtain

$$
\begin{aligned}
U & =m I+(m-1) J, \\
V & =-(n-1)(4 n-1) I+6 n(2 n-1) J+(n-1)(I, J), \\
W & =(4 n-1) I+(4 n-1)^{2} J-(I, J),
\end{aligned}
$$

where $m=\left((h-1)^{3}+1\right) / 4$. It follows that

$$
B B^{T}=m I+(m-1) J .
$$

This completes the proof of the theorem.

It is clear that three different Hadamard designs of type 1 of the same order can be used in constructing B. However, all attempts to apply this method using designs of different orders, have failed.

References

1. A. T. Butson, Generalized Hadamard matrices, Proc. Amer. Math. Soc. 13 (1962), 894-898.
2. J. Williamson, Hadamard's determinant theorem and the sum of four squares, Duke Math. J. 11 (1944), 65-81.

National Bureau of Standards

