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1. The purpose of this paper is to generalize R. McFadden and

Hans Schneider's Theorem [3].

2. Definition and notation. Let a^O be a regular element of a

semigroup 5. An element x in 5 is called an inverse of a if axa = a

and xax = x. Let n be a fixed positive integer. A semigroup 5 with

zero is said to be homogeneous n regular if every nonzero element of

5 has precisely n distinct inverse elements in 5. A semigroup 5 with

zero is said to be null if 55 = {0}. A semigroup 5 will be called a right

(left) zero semigroup if xy = y (xy = x) for all x, y in 5. | 7") denotes

the cardinality of a set T.

If 5 is completely 0-simple, I shall follow Clifford-Preston [l]

(with / replacing A) and let {Rt: i(El} be the set of nonzero 7?-

classes, {I;:jG7J the set of nonzero 7,-classes, \Hij = Rif\Lj: (i, j)

El(IxJ)}, be the set of nonzero 77-classes and write 7?? = 7?jU{0}.

If a^O is in a semigroup 5, 720= {eE5: e = e2 and ea = a\, Fa =

{/£5: /=/2 and af = a\, Na= {x£5: axa=a and xax = x}, h(i)

= | {j€zJ'- Hij is a group} | and k(j) = | {t£7: 77,-y is a group} |. If

T^S, &(T)= {eGT: e = e2}. A homogeneous n regular semigroup 5

is called an (h, k) type if for all a£5\0, |720| =h and \ Fa\ =k, where

h and k are fixed positive integers with hk = n.

3. We shall need the following lemmas.

Lemma A. Let 5 be completely 0-simple. If a(EHijt then

(1) Ea = &(Ri) and \Ea\ =h(i).

(2) Fa = &(L3) and \Fa\ =k(j).

(3) \Na\=h(i)k(j).

Proof. (1) Since Hik, &£/ contains an idempotent if and only if

77a is a group, |s(7?f)| =h(i). By Lemma 2.14 of [l], &(Ri)QEa. If

e£72a, then obviously {o} p^eSQaSCR} whence EaQ&(Ri). Hence

Ea = &(R{) and (1) follows. The proof of (2) is similar.

As an immediate application of [l, Theorem 2.18], we see that

aG77,j has an inverse in Hmn if and only if both 77mj- and 77i„ are

groups, and in this case the inverse in 77m„ is unique. Thus (3) follows.
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Lemma B. For all a, b in a completely 0-simple semigroup S aba

— a^O implies bab = b.

Proof. Let axa = a ^ 0. Then {0} ^ 5(ax) = 5x whence ox is a right

identity of 5x and x£5x. Hence xax = x.

4. The following theorem is a generalization of R. McFadden and

Hans Schneider's Theorem.

Theorem. Let S be a 0-simple semigroup and let n be a positive

integer. Then there exist positive integers ft and ft such that n = hk and

for which the following statements are equivalent.

(i) 5 is an (ft, ft) type homogeneous n regular and completely 0-simple

semigroup.

(ii) For every a^O in S there exist precisely n distinct nonzero ele-

ments {x,}".!, such that axia = a for i=\, 2, • • • , n, and for c, d in

S cdc = c t^ 0 implies dcd = d.

(iii) For every a^O in S there exist precisely ft distinct nonzero

idempotents {e<} ?_ j = Ea and ft distinct nonzero idempotents {/y} f= t = Fa

such that EaC\ Fa contains at most one element.

(iv) Every nonzero principal right ideal R contains precisely ft non-

zero idempotents and every nonzero principal left ideal L contains pre-

cisely ft nonzero idempotents such that RC\L contains at most one non-

zero idempotent.

(v) 5 is completely 0-simple. For every 0-minimal right ideal R

there exist precisely ft 0-minimal left ideals {Lf}1=1 and for every 0-

minimal left ideal L there exist precisely ft 0-minimal right ideals

{P,-}*_!  such that LRj = LiR = S, for every i=l,  2, ■ • • ,  ft, j=l,
Z,   '   '   '   ,  K.

(vi) 5 is completely 0-simple. Every 0-minimal right ideal R is the

union of a right group with zero G°, a union of ft disjoint groups except

zero, and a null subsemigroup Z which annihilates the right ideal R on

the left and every 0-minimal left ideal L is the union of a left group with

zero G'°, a union of ft disjoint groups except zero, and a null subsemi-

group Z' which annihilates the left ideal L on the right.

(vii) 5 contains at least n nonzero distinct idempotents, and for every

nonzero idempotent e there exists a set E= {e,-}"=1 of nonzero idempo-

tents of S such that eE is a right zero subsemigroup of S containing pre-

cisely ft nonzero idempotents, Ee is a left zero subsemigroup of S con-

taining precisely ft nonzero idempotents, e(&(S)\E) = {o} =(&(S)\E)e,

and eEC\Ee= [e\.

Remark 1. If w = l, then the theorem above takes the same form

as R. McFadden and Hans Schneider's Theorem [3].
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5. Proof of the theorem, (i) implies (ii). This is clear by the defini-

tion of an (h, k) type homogeneous n regular semigroup and

Lemma B. (ii) implies (iii). We shall prove the existence of a nonzero

primitive idempotent of 5. Let a be a nonzero element of 5. By (ii)

there exist {xt}"=1 in 5 such that aXia—a and x<ax; = Xi for every

* = 1, 2,   ■ ■ ■ , n.
Choose ax\ = e. Clearly 0^e(ES(5). Let/ be any nonzero idem-

potent such that/e = e/=/. Since fef= (fe)f=ff=f, we have efe = e by

the assumption of (ii). But we have efe = e(fe) =ef=f. Hence we con-

clude e =/, and e is a nonzero primitive idempotent of 5 and hence 5

is completely 0-simple [l, p. 76]. The last assertion of (iii) now fol-

lows since each 77-class has at most one idempotent.

Let a£77;3- and 6£77mg. Define h = h(m) and k = k(q). Let c£77ic

and d€zHmi. By Lemma A and (ii)

n = \Na\  = h(i)k(j),

n =  | 7VC |   = h(i)k(q) = h(i)k,

n =  \ Nb\   = h(m)k(q) = hk.

Thus it follows that h = h(i), k = k(j), \Ea\ =h, and \ Fa\ =k. (iii) im-

plies (iv). By (iii), 5 contains nonzero idempotent. Let e, f be non-

zero idempotents such that ef=fe=f. Then both e, f are in Ef(~\Ff,

whence e =f. Hence 5 is completely 0-simple. The rest is just Lemma

A, parts (1), (2).

(iv) implies (v). By (iv), it is clear that 5 has a nonzero primitive

idempotent, and hence 5 is completely 0-simple. Then every nonzero

principal right ideal R(a) =a\JaS = aS for a^O in 5 is a 0-minimal

right ideal of 5 by Exercise 2 in [l, p. 83]. Let 8(7?(a)\0) = {e;}?_i and
let Li = Sei. Then {L,}j=1 are 0-minimal left ideals of 5 such that

LiR(a)=S (* = 1, 2, ■ ■ ■ , h) by [l, Lemma 2.46]. The proof for a

0-minimal left ideal L(a) = Sa is analogous, (v) implies (vi). Let 7? be

a 0-minimal right ideal of 5. Then by (v) there exists a set {L;}*=i

of 0-minimal left ideals such that Ls-7? = 5 (*=1, 2, ■ • ■ , n). By

[l, Lemma 2.46], RC\Li=RLi is a group with zero. Let G° = U-'_1 (RL{)

and let Z be the complement of the nonzero part of C70 in R. Then

7? = G°WZ, and ZR = {0} since each element of Z belongs to a 0-mini-

mal left ideal 7/ for which L'R = {o} by [l, Lemma 2.46]. Therefore

Z is a null subsemigroup of 5. By [l, Exercise 2, p. 39], it suffices to

show that S(G) =8(G°\0) is a right zero semigroup. From [l, Lemma

2.43], it follows that 8(7?\0) is a right zero semigroup, and so is S(G).

The proof of the rest is similar to the proceeding argument.

(vi)  implies  (vii).  Assume  (vi).  Let e£S(5\0)   and  let S(e5\0)
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= {<?,}?_!. Define E = U?_i (5e,\0). Then |p| =hk = n. From £eC5e

and EeQ&(Se) it follows that Ee is a left zero semigroup with \Ee\ =k

= | S(5e\0) |. We claim that (8(5) \£) ■ e = {0}.

Assume, by way of contradiction, that ge^0 for some g in (8(5) \E).

Setting L = Sg and R = eS, we have that RL=RC\L is a group with

zero by Lemma 2.46, [l]. Then gGS(7)C£, contrary to gG8(5)\£.

Thus we must have (8(5) \£) • e = {0 J. Analogously, we can show that

e-E is a right zero semigroup, \eE\ =ft and e- (8(5) \E) = {OJ.

Finally, from (eEC\Ee) C (eSC\Se) = 7?°, it follows that eEPiEe = {e \.

(vii) implies (i). If e/=/e=/ 0^/=/2 then /G£ by e(8(5)\£) = {oj,

whence f^eEC\Ee = {e}. Thus e=/, and 5 is completely 0-simple.

Suppose e5\0 = P*. Since e(8(5)\£) = {0}, it follows that 8(P,)C£,

whence &(Rt)CleE. But as eE is a right zero subsemigroup each

gGeE is idempotent. Also 0(£eE, for since e£e£, xe = e, all x^eE.

Hence ePCS(Pi)- We have proved that &(R/)=eE. Let O^aEff.;.

There exists an idempotent eGPi- Then e£ = 8(P,) =£„, by Lemma

A, whence | P„| = | eE\ =ft by (vii). Similarly, | P„| =ft. By Lemma A,

| Na | = ft ■ ft = w and (i) is proved.

This completes the proof of the theorem.

Remark 2. In the theorem above, ft, ft, and n could be infinite

cardinals.
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