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1. Introduction. In the past seventy years there has been a large

development of various conditions which guarantee the uniqueness of

solutions of ordinary differential equations. Many of these condi-

tions are apparently unrelated. In 1949, LaSalle [6] gave two differ-

ent conditions which covered several different criteria for uniqueness

[2], [3], [4], [5]. Since then, further uniqueness results appeared

which cannot be obtained from LaSalle's conditions [8], [9], The

purpose of this paper is to generalize the various conditions and to

unify the methods of proving uniqueness.

The crucial point in the unification is Theorem 2.1. In practice,

however, this theorem has little value. Therefore, in Theorem 2.2 we

give five different conditions each of which is sufficient for uniqueness.

These conditions are generalizations of known conditions (see §3).

Finally, on the basis of these generalizations, we shall give a simple

uniqueness condition which is compatible with the Caratheodory

existence theorem.

2. The basic theorem. In this section we shall be concerned with

an ordinary differential equation in a normed linear space 5. For

yES, \y\ will denote the norm of y.

Consider a domain D in [0, l] XS which projects onto [0, l] and

let / be a mapping from D into S. We shall be concerned with the

problem of finding a differentiable function y such that

y'(x)=f(x,y(x)),        xG[0,l],

y(0) = a,

where aES and is such that (0, a) ED. Assuming that (2.1) has a

solution, we shall seek conditions under which it is the only one.

Now, on the basis of the known uniqueness theorems, it seems

reasonable to make the following

Assumption. There is a continuously differentiable function W(x, r),

0<x^l, 0<r< 00 , such that

(i) dW/dx(x, r)^0, dW/dr(x, r)^0, 0<x^l, 0<'<oo;

(ii) dW/dr(x,\y-z\)\f(x, y)-/(x, z)\ g -dW/dx(x, \y-z\), 0<x
gl, y9*z, (x, y)ED, and (x, z)ED; and

(iii)  W(x, 0+) = -oo, 0<x^l.
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By defining IF(x, 0) = — oo, 0<xgl, we may assume that IF is a

continuous function from (0, l]x [0, °o) into [— oo, oo).

Remark. Although dW/dr is allowed to be zero for some r, dW/dr

cannot be identically zero in a neighborhood of zero without (iii) be-

ing violated. Thus (ii) imposes a condition on the behavior of

\fix, y) -fix, z)\ as | y-z| ->0.
The remarkable consequence of the above assumption is the fol-

lowing

Theorem 2.1. Let y and z be two solutions of (2.1). Then y=z if

and only if

(2.2) Lim inf IF(x, | yix) — z(x) | ) = — oo .
z->0+

Proof. Let (pix) = | yix) — z(x) | and let

P = [xE (0, l):(t>ix) > 0}.

Letting D+ denote the upper right derivative, we have that

| E>+4>ix) |   ^ | /(*) - z'ix) | ,        x E (0, 1).

From (i) and (ii) it then follows that for xEP,

dW dW
D+Wix, <Z>(x)) g-(x, <fix)) -\-ix, 4>ix))D+d>ix)

dx dr

dW dW .
S — ix, 4>ix)) + — ix, 0(x)) I y'ix) - z'ix) \

dx dr

dW dW .
^ —- ix, 4>ix)) + — (x, 4>(x)) | f(x, yix)) - fix, z(x)) |

dx dr

S 0.

Hence W(x, </>(x)) is nonincreasing on P. But IF(x, (pix)) is continuous

for x£(0,1) and IF(x, 4>ix)) = — oo when x^P. Therefore, PF(x, (frix))

is nonincreasing for xG(0, 1). Thus either P = 0 or P = (0, a) some

a>0. Since in the latter case, PF(x, <Z>(x)) would be bounded below

near x = 0, it follows that 0 = 0 iff Lim inflH.0+ IF(x, </>(x)) = — oo.

Remark. In the special case where IF(x, r) =wi(r) — w2ix) (which

is the case in almost all known uniqueness theorems) the above

theorem holds when wi is differentiable on (0, oo) and w2 is absolutely

continuous on compact subsets of (0, l]. The fact that IF(x, 0(x)) is

nonincreasing on P in this case has been shown by Heins [l].

Let us now give several sufficient conditions which guarantee

uniqueness (or equivalently, (2.2)).
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Theorem 2.2. Solutions of (2.1) are unique when any one of the

following holds:

(a) There is an r0 > 0 such that W(0+, r) < oo, 0 < r ^ r0, and

Lim inf W(0+, r) = - oo.

(b) There exists a differentiable function coi(r), 0^r<oo, and an

absolutely continuous function co2(x), O^x^l, such that

(a) coi'(r)>0, rE(0, oo), a{ (x) £0, a.e. x£(0, 1);

(B) co1(0)=«s(0)=0;

(7) wi (|y-s|)|/(x, y)-/(x, z)|^w2'(x), a.e. x£(0, 1), y^z,

(x, y)GA and (x, s)£B;
(5) Lim infIH.o+ IF(x, wr1(w2(x))) = — co.

(c) / is continuous on D and Lim infx,o+ W(x, x) = — 00 .

(d) / is continuous on D, W(x, x) is bounded in a neighborhood of

zero, dW/dx is a nonincreasing function of r and there is an x0>0

such that Lim infx^o+[l^(xo, xh(x)) — W(xQ, x)] = — 00 for every h such

that /j(x)—>0 as x-^0+.

(e) / is continuous and Lim inflH.0+ W(x, xh(x)) = — 00 for every

nonnegative function h such that /j(x)—>0 as x—>0+.

Proof. In what follows, y and z will be two solutions of (2.1) and

we shall let d>(x) = |y(x) — z(x)|, x£ [0, l].

Part (a). By (i), W is nonincreasing in x. Thus W(x, <p(x)) ^

W(0+, <p(x)), xE(0, l]. But<£(x)-^0 as x->0+. Therefore

Lim inf W(x, <b(x)) ^ — 00 .
x->0*

Part (b). From the results of Heins [l], it follows that wi($(x))

—w2(x) is a nonincreasing function of x£(0, 1). Since <j>(0)=0, we

have by (/3) that «i(<£(0)) —co2(0) =0 and thus wi(<p(x)) ̂ co2(x). But,

coi is increasing and thus wi-1 exists. Hence, we have that

<p(x) ̂  cor1(a>2(x)), x G [0, 1].

Since    W(x, r)    is a   nondecreasing   function    of   r,    W(x, $(x))

^ W(x, wr1(w2(x))), xG(0, l], and from (8) it follows that

Lim inf W(x, <i>(x)) ̂  — 00.
x->0+

Part (c). When / is continuous, we have that y and z are continu-

ously differentiable and that

I y'(0) - 2'(0) I   =   |/(0,«)-/(0,«)|   =0.
Thus
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.    'frix)
Lim inf-= 0.

1—0+ X

But then (pix) ^x for all x sufficiently small and we have that

Lim inf W(x, (frix)) ̂  Lim inf IF(x, x) = — =o.

Part id). Again we have <j>(x)/x—>0 as x—>0+. Also, for t sufficiently

small we have that (frit)^t and thus dW/dxix, 4>it))^dW/dxix, t).
Integrating this inequality from Z to x0 (where Z^x0) we have

Wixo, (frit)) - Wit, (frit)) 2: Wixo, t) - Wit, t)

or

Wit, (frit)) ̂  Wixo, (frit)) - Wixo, t) + Wit, t)

^ W (xo, t —j - Wixo, t) + Wit, t).

But Wit, t) is bounded and hit) =<£(Z)/Z->0 as Z-+0+. Therefore

Lim inf IF(Z, (frit)) ̂  - oo.
(-.0+

Part (e). Again 0(x)/x^O as x—>0+. Thus

/        <fri*)\
Lim inf IF(x, <£(x)) = Lim inf IF I x, x-I = — oo.

z^0+ x^o* \ x   )

3. Examples. In the table below we list the known conditions

which guarantee uniqueness. The letter in column three indicates

which part of Theorem 2.2 is applicable.

W(x, r) Assumptions Originator

1. logr — Kx a       Lipschitz

2. wi(r)—Kx wi(0+)= — <*> a      Osgood [2]

3. wi(r)-w2(x)       wi(0+)= - «>, |to2(0+)| < <» a      Montel [3]

Heins [l]

4. log r-p log x     0</3<l c       Rosenblatt [4]

5. logr—log x e      Nagumo [5]

6. Wi(r)— Wi(x)        wl(x)— Wi(x)—>— °o as x—>0+ c       LaSalle [6]

7. Wi(r)—Wi(x)        Wi(x)—w%{x)  bounded and Wi(xh(x))

—Wi(x)—>— 00 for those h^O such

that /K*)->0 as x->0+ d      LaSalle [6]

8. log r—Klog*     o>i = rl~a, <a2=px; 0<1— a<\/k b      Krasnoselskil

and Kreln [7]

9. wi(r/x)—w2(x)    Wi(0+)— — 00, |a)2(0+)| < » e       Walter [8]
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4. Caratheodory problem. Consider the special case where S=Rn.

In this case let us replace (2.1) by the problem of finding an ab-

solutely continuous function y on [0, l] such that

y'(x) = fix, yix)), a.e. x E (0, 1),
(4.1)

y(0) = a.

As before, we shall assume that (4.1) has a solution and ask if there

is only one.

By again assuming that there is a continuous function lF(x, r),

such that for each rEiO, °°) IF is an absolutely continuous function

of x on compact subsets of (0, l], such that idW/dr)ix, r) exists and

is continuous on (0, l]x(0, oo), and such that W satisfies (i)-(iii),

we have

Theorem 4.1. If y and z are two absolutely continuous solutions of

(4.1), then y = z iff

Lim inf JF(x,  | yix) — z(x) | ) = — oo.

Proof. Let<£= |y-z| and P= {xG(0, 1):</>(x)>0}. Since S = Rn,

we have that (fr'ix) exists and |<£'(x)| ^ | y'(x) —z'(x)| for a.e. x£P.

Thus

d dW dW
— Wix, (frix)) = -(x, (frix)) +-ix, <frix))<fr'ix)
dx dx dr

s o

ior a.e. x£P. Also, PF(x, (frix)) is an absolutely continuous function

on compact subsets of (0, l]. Thus IF(x, (frix)) is a nonincreasing func-

tion of x and we have the desired result as in the proof of Theorem

2.1.
Clearly we have

Theorem 4.2. // W satisfies any of the conditions of Theorem 2.2,

then solutions of (4.1) are unique.

Our main interest here is to state a fairly simple condition which

gives the uniqueness of solutions of (4.1) whose existence are guaran-

teed by the existence theorem of Caratheodory. We have

Theorem 4.3. Let f be measurable in x for each y and continuous in

y for each x. Assume there is an integrable function mix), x£(0, 1)

such that

|/(x, y) |   :£ mix), a.e. x E (0, 1).
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Finally, letting M(x) =Jlm($Ad% and assuming that

Lim inf W(x, 2M(x)) = - oo,
z-»o+

we have that there exists one and only one solution of (4.1).

Proof. Existence is guaranteed by the Caratheodory theorem (see

[9]). Now, let ui(r)=r and w2(x) = 2M(x). Then

<»i(\y- z\)\f(x,y)-f(x,z)\   =  |/(x,y)-/(x,2)|

^ 2m(x)

^ co2'(x).

Thus by Theorems 2.2b and 4.2, we have that solutions of 4.1 are

unique.
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