
TWO THEOREMS IN STABILITY THEORY1

J. F. P. MARTIN

In studies concerned with determining the stability of solutions of

some systems of linear differential equations, it often is helpful to be

able to transform the given system into another whose stability

properties are known or are more easily obtainable. It is of interest,

therefore, to consider transformations usable for this purpose, and

to develop criteria to indicate when one system has the same stability

properties as another. In Theorem 1 we give conditions sufficient to

identify a Lyapunov transformation if certain properties are pos-

sessed by the coefficient matrix in the linear differential equation

satisfied by the transformation, and in Theorem 2 we present an ex-

tension of Erugin's theorem [l, p. 122]. However, we need a few

definitions and some preliminary work first.

Definition. A nonsingular matrix Q = Qit) is said to be a Lyapunov

transformation if it is continuously differentiable for all Z^O and if

Q, Q~1, Q', and (Q"1)' are each bounded. We designate the class of all

such by the symbol L(0, oo). (Primes indicate differentiation.)

Definition. A matrix X(t) is said to be reducible to a matrix Y(t)

if both are defined for all Z 2; 0 and if there exists a Lyapunov trans-

formation such that X = QY for all i^O. When this holds, clearly Y

is reducible to X also.

Definition. Matrices A(t) and B(t) are said to be L-equivalent to

each other if both are defined for t ^ 0 and if there exists a Lyapunov

transformation Q = Q(t) such that B = Q~1AQ — Q~1Q' in which case

it is easy to see that we also have A =P~1BP—P~1P' where P = Q~1.

In defining the class L(0, oo), we follow Gantmacher [l] and

Lyapunov [2] rather than Nemytskii and Stepanov [3]. Although

L(0, oo) is a restricted class of transformations it is a very useful one,

for Lyapunov (loc. cit.) showed that matrices in this class preserve

the stability properties of the Zero solution of a linear system of

differential equations. More precisely, if X'=Ait)X and Y' = B(t)Y

and if X = QY for some Q in L(0, oo) then the Zero solution for Y is

asymptotically stable, stable, or unstable according as the Zero solu-

tion for X is. Gantmacher [l, p. 117] points out that for fixed ra,
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the wX« matrices in L(0, oo) form a group under multiplication,

although we shall not make use of this concept. Of greater utility at

the moment is the idea of an equivalence relation.

Lemma 1. Let an nXn matrix A(t) be continuous for all Z2:0. Then

the set {B(t)} of all nXn continuous matrices L-equivalent to A(t) form

an equivalence class.

Proof. A(t) is L-equivalent to itself under I, the identity matrix

and we already have pointed out in the definition that if A is L-

equivalent to B then B is L-equivalent to A. From the equation

B = Q~1AQ — QrlQ' we see that for any Q in L(0, =o)> B is continuous

if A is. Finally, if B = (Pi)~lAPi-(Pi)~lP{ and if

C = (P2)-'BP2- (P2)-'Pl,

then

C = (Pd-KPA-'APiP, - (Pi)-1(Pi)-1P(P2 - (P2)~1P2

= p^APt - PrlPi

where Pz = PiP2 and clearly F3 is in L(0, oo), so A is L-equivalent

to C. Q.E.D.
The almost obvious relationship between reducibility and L-equiv-

alence is easy to show.

Lemma 2. Let A(t) and B(t) be continuous for /^0, and let X(t) and

Y(t) satisfy: X'=AX, X(Q) = &, and Y'=BY, Y(0) = C2, where d
and C2 are any nonsingular constant matrices. Then X is reducible to Y

if and only if A and B are L-equivalent.

Proof. If X is reducible to Y, then X = <2Ffor some Q in L(0, oo).

Then X'=AQY=Q'YA-QY' whence Y'= (Q~^AQ-Q-'Q')Y = BY so
B is L-equivalent to A.

Similarly, if B = Q-^AQ-Qr^Q' for some Q in L(0, oo), then
Q' =AQ — QB, and this is known to have the solution Q = XY~l where

X'=AX and Y' = BY. So we have X = QY and X is reducible to F.

Q.E.D.

Corollary. Reducibility is an equivalence relation.

We remark that it is possible to arrive at the same conclusions by

using the group property mentioned earlier to show that reducibility

is an equivalence relation and then investigating the relationship be-

tween the matrices A(t) and B(t). One of the advantages of the pres-

ent approach, however, is that it tends to focus the emphasis on the
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coefficient matrices, which are the principal quantities in evidence

when the solution is not yet known.

It is evident that every nonsingular constant matrix is a Lyapunov

transformation and it is not difficult to construct others. However,

as each Lyapunov transformation Q(t) is continuously differentiable,

it satisfies some linear system Q'= M(t)Q of differential equations

with continuous coefficients. In Theorem 1 below, we give a set of

conditions sufficient to insure that a fundamental solution matrix for

a given system is a Lyapunov transformation. For the conditions

stated in the theorem, it is well known that any fundamental solution

matrix is bounded and has a bounded inverse, but the fact that it is

a Lyapunov matrix does not seem to have been generally recognized.

The proof of the theorem is essentially trivial, however, in that all

that is required is a routine checking of the properties required of a

Lyapunov transformation.

Theorem 1. Let A(t) be continuous and bounded for Z^O and let

fo\\Aiu)\\du^K< oo for all Z3:0, where the norm of Ait) is as defined

below. Then any fundamental matrix Xit) satisfying X' =Ait)X is a

Lyapunov transformation.

Proof. We use the norm ||^4|| =||^4(Z)|| =max,-j£)- |a,u(Z)| } for the

operator Ait). For any solution vector xy(Z) in x(Z) we define |xy(Z)|

= \xj\it) = zZi\xi,jit)\and\\Xit)\\=\\x\\it)=maxj{\xj\:xjEX\.Now
it is well known that | Xj\ ^ [X,-(0)| exp /„' ||^4(ra)||iM which is
bounded, so X(Z) is bounded. Then as A it) is bounded and continuous

it is clear from ||X'|| ^||-4(*)H -\\x\\ that X' is also. The boundedness

of the integral of the norm of A implies that the trace of A has a

bounded integral also, so from det X = det X(0) exp f0' trAiu)du we

see that | det X(Z) | is bounded and is bounded away from zero.

Hence the same is true of | det X~1if) \.

Xit) and X-1(Z) are both continuously differentiable and bounded

and X_1(Z) satisfies the differential equation Z'=—Z^4(Z) so the

transpose iX~l)T satisfies Y'=-ATY, and from || Y'\\ g|| -AT\\

•|| F|| we see that dX~l/dt is bounded. Therefore X(Z) is in L(0, oo).

Q.E.D.
It should be noted that the conditions stated in the preceding

theorem are sufficient but not necessary to guarantee that a funda-

mental solution Xit) is in 1.(0, oo): For example, consider the one-

dimensional system: x' = (sin t/t)x, x(0) = l. The solution x(Z)=exp

iSiit)) is a Lyapunov transformation although /„' | sin u/u\ du is un-

bounded.
It would be desirable to have a set of necessary and sufficient con-
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ditions for the transformation of one system to another by a Lya-

punov transformation, but the general problem here seems quite

difficult. There are special situations, however, for which it is possible

to give conditions sufficient to insure that two given systems are

L-equivalent.

Theorem 2. Let A (t) and B(t) be continuous for / 2:0 and let A (/) and

B(t) be L-equivalent to their Jordan canonical forms J(A)=J(A)(t)

and J(B)=J(B)(t), respectively. Then A(t) is L-equivalent to B(t) if

and only if for some ordering of the eigenvalues a,(t) of A (t) and &,-(/) of

B(t), J(A)—J(B) is a diagonal matrix for all /^0 and there exist con-

stants Ki and K2 such that \ai(t)—bi(t)\^K2 and |/q Re(at(u)

— bi(u))du\ ^Kifor all Z^O and each i — 1, 2, • • • , n.

Proof. Note first that J (A) and J(B) are continuous, for as J (A)

is L-equivalent to A(t), there exists a Qi = <2i(/) m L(0, oo) such that

J (A) =Qi1AQi — Q~1Qi and each term on the right is continuous so

J (A) is also and the same argument applies as well to J(B). It follows

that the distribution of l's on the first superdiagonal of each matrix

does not change for any /2;0.

We may assume that the eigenvalues of J (A) and J(B) are ordered

at / = 0 in any way desired, for if they are not, the desired ordering

can be achieved in the following way. If J(A) =QilAQi — Q71Qi then

there exists a permutation matrix P such that P~1J(A)P has the

desired ordering at / = 0, and

P-lJ(A)P = (QiP)-lA(QiP) - (QiP)~l - (QiP)
dt

so the desired ordering of J (A) is L-equivalent to A by the Lyapunov

transformation QiP. The same procedure obviously applied to J(B)

as well.

Therefore, we can write:

J (A) = Ji(A) + J2(A) + • • • + Jk(A),

J(B) = Ji(B) + J2(B) + ■ • • + Jm(B).

Now by Lemma 1 it is necessary and sufficient to consider the

L-equivalence of J (A) and J(B), and by Lemma 2 these are L-equiva-

lent if and only if X(t) is reducible to Y(t), where X(t) and Y(t) are

fundamental matrices satisfying X' =J(A)X, and Y' =J(B) Y.

Now assume that J(A) is L-equivalent to J(B). Then X = QY for

some Q in L(0, oo), and J(A) and J(B) are continuous and each

commutes with its integral so:
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Q = IF"1 = exp(  f JiA)iu)du\ exp(- J   /(5)(«)rf«J.

All elements in Q and Q~l are bounded for all Z^O and as Q is an

upper triangular matrix we see that the elements qi,{ on the main

diagonal of Q are gi,,- = exp(/o(a,(M) — btiu))du), so it is clear we must

have |/o Re(a,(M) — biiu))du\ ^Ki for some positive real number Ki.

Now we show that the distribution of unit elements on the first

superdiagonal must be the same for both JiA) and JiB). Let:

JiA) =Di+£i and JiB) =D2+E2, where Di and D2 are the diagonal

matrices whose elements are the eigenvalues a{ of A and bt of B, and

Ei and E2 are continuous nilpotent matrices having all elements zero

except perhaps for certain unit elements on the first superdiagonals.

Then we can write:

X = Xit) = exp I   (£»i + E/)du
Jo

= piitE/) exp I    Diiu)du,
J o

F-i = F-i(/) = exp I    - iD2 + E2)du
J o

n-l    n-l

= (exp -   I    D2iu)du\ (l - IE2 + tE\ — ■ ■ •  ±-— J

= (exp—  I    D2iu)du )p2itE2).

Then

Q = piitE/) (exp J   (£>i - D/)duj p2itE2)

and

g-1 = p2i-lE2) (exp j iD2 - D/)duj Pii-tEi)

and both of these are continuous and bounded. But each element of

Q (and also of Q"1) is a polynomial in t with bounded coefficients
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which are also functions of / in general. Hence, each qi,j in Q can be

bounded for all /^0 only if every coefficient of /*, £2:1, is zero in

each polynomial so that pi(tEi)p2(tE2) =1. It follows that J(A) and

J(B) have the same distribution of l's on their first superdiagonals so

they commute for all /S:0.

Consequently we now can write Q as:

Q = exp f  (J(A) - J(B))du.
J o

From the fact that Q' and (Q~1)' are each bounded and Q'=

(J(A) - J(B)) exp /o (J(A) - J(B)) du, it is easy to see that

J(A) — J(B) is a bounded diagonal matrix, so there exists a number

K2 such that a{(t) —bt(t) ^K2 for all /S:0. Now we have shown that if

A(t) and B(t) are each L-equivalent to their Jordan canonical forms,

and if these Jordan forms are L-equivalent to each other, then A(t)

and B(t) must have the properties claimed.

Conversely, if A(t) and B(t) are each L-equivalent to their Jordan

forms J(A) and J(B), and if they have the properties stated, then

it is clear that [J(A), J(B)]=0, so with X = exp /„' J(A)du and

F=exp/U J(B)du where X' = J(A)X and Y' = J(B) Y with X(0)=l
= F(0) we put Q = XY~1 = exp /„' (J(A)-J(B)) du and it is easy to

see at once that Q, Q', Q-1, and (<2-1)' are continuous and bounded

so that Q is in L(0, oo) and X = QY. Consequently, J(A) is L-equiva-

lent to J(B), and so A(t) must also be L-equivalent to B(t).    Q.E.D.

Corollary 1 (Erugin's Theorem). // A and B are constant matri-

ces then A is L-equivalent to B if and only if J (A) and J(B) have the

same distribution of l's on their first superdiagonals, and for corre-

sponding eigenvalues a,- of A and bi of B we have Re(a,) = Re(&;) for

i = l, 2, • • • , n.

It seems worthwhile also to mention as corollaries two additional

facts emerging from the proof of the theorem.

Corollary 2. If A(t) is continuous for />:0 and is L-equivalent to

its Jordan canonical form J (A), then J (A) is continuous and hence

the distribution of l's on the first superdiagonal does not change at any

t^O.

Corollary 3. A continuous nondiagonal Jordan canonical form

J (A) is not L-equivalent to any continuous diagonal Jordan canonical

form J(B).

We call attention to the fact that in Theorem 2 it is not required
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that ^4(Z) or 5(Z) be bounded although the eigenvalues of ^4(Z) and

Bit) must be "sufficiently close" to each other. Consider the following

example: Let

l   rz2 + z-i       t+i    i
A U) =- f or Z > 0

Z + lL~(Z+l)   Z2 + 3Z+ 1.

and

1      rz3 + t2 - 2t - 3 4(Z + l)2

~ it + l)2 L     -(Z+l)2 Z3 + 5Z2 + 6Z+ 1. '

Then by routine means we can find the eigenvalues and similarity

transforms to find:

r       tt +-      i
-i t + i

JiA) = Ci ACi =

0 Z +-
Z+ lj

r    z2 + z - i I
z +- 1

-l (z + I)2
JiB) =C2 BC2 =

Z2 + Z - 1
0 Z H-

L H+ I)2 J

where

rl    0"1 T2    r
Ci = and   C2 =

Ll    U Ll    lJ

then ai-bi = l/it+l)i and /„ (ai-&j)<Zra = (Z-l)/2(Z + l) and both of
these are bounded. So if we set:

^ = exp(^Tl))-7-

Then we find that A is L-equivalent to B under the Lyapunov trans-

formation Q=C2QoC2~1.
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