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1. Introduction. Let Lz,v denote the space of functions on the posi-

tive real axis into a separable Hilbert space V, such that Jq |/(x) 12dx

< oo and for every uE V, (/(x), u) is measurable. Let L2,» denote the

space of Fourier transforms

/> DO

fix)e«* dx,
o

where fEL2,v and dx denotes dx/2-ir. The functions in L2iV can be

extended to analytic functions in the upper half plane. We denote

this space of analytic functions by Hv. By the Paley-Wiener theorem,

Hv is characterized by the property that hEHv if and only if for

some constant if and every y>0, Jl^ihix+iy), hix+iy))dx<M. Hv

is a Hilbert space with inner product (/, g)i=foifix), gix))dx.

Let T, (for fixed s>0) be the left translation operator on L2,v,

Tafix)=fix+s). The family {F,|5>0} is a semigroup of operators.

Let r, (for fixed s>0) be the right translation operator on L2iT:

(six — s),       for x — s &; 0,
r>gix) =  \

lO, for x - s < 0.

The family {t„|s>0} is a semigroup of isometric operators.

A subspace I of L2,„ is said to be left invariant (an Z-space) if for

every/El, {TJ\s>0]QI.
A subspace r of L2,v is said to be right invariant (an r-space) if

for every gEr, {r,g\s>0] CZr. It is easily seen that the orthogonal

complement of an r-space is an Z-space and vice-versa.

An inner factor is an operator valued function defined and analytic

in the upper half plane such that for each z, Fiz): W-+V (where W

and V are separable Hilbert spaces), ||F(z)|| =1, and for almost all

real z, F(z) is an isometry. If V is finite dimensional, and W=V then

det F (defined as the determinant of the matrix (F(2)«j, u/), where

Ui is an orthonormal basis for V) is a scalar inner factor.

Let R denote the Fourier transform space of an r-space. An R-

space is characterized as being invariant under multiplication by
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e"" for every 5>0. The following result has been proved by Lax [4],

[5] and by Halmos [2]:

Theorem A. Every (nonzero) closed R-space can be represented in

the form RV — FVHW, where Fv is an inner factor and F"(z): W—*V.

The inner factor corresponding to an F-space is unique to within

multiplication on the right by a constant unitary operator. By re-

garding two inner factors as equivalent if they differ on the right

by a constant unitary operator, we obtain a one-to-one correspon-

dence between nonzero closed F-spaces and inner factors. This cor-

respondence carries over to closed /-spaces (IEL2,V), where R is the

Fourier transform space of r (= /x) and will be denoted by a common

subscript la~Fa (or lack of subscript, /~F). From the division theory

of [4], we have

Theorem B. laQh if and only if there exists an inner factor Fc such

that Fb = FaFc.

A (generalized) exponential is a function fEL2tV of the form

f = p(x)eiXx where p(x) is a polynomial with coefficients in V, and

ImX>0. We define the order of the exponential / as the degree of

p(x);~f\ is called the exponent belonging to the exponential/.

Definition. An inner factor F is said to be a Blaschke product if

/ (~F) is spanned by the exponentials contained in I.

We show that in the case of scalar inner factors, our definition of a

Blaschke product is equivalent to the standard definition.

Let [tf;|j€E-d denote the smallest closed /-space containing

{vj\jEJ}- Let /= [xk>'eiX>x\jEJ]; we note that

[x*/e»y* I j E J] = [#*,(x)e'V I j E J],

where pks is a polynomial of degree kj.

Let F be a Blaschke product according to the standard definition.

We will show that / (~F) has a basis of exponentials. Let g be an

arbitrary element of lL, and Fh = g. If F has a zero of order mj at

z= —Ay, then it follows from the equation

(1.1) (Fh)ki(-\j) =  j    g(x)(ix)k>e-*>* dx,
J0

that le(= [xm^-Vx>'xI/£/])£/.

We need only show that /CZ/e. If we substitute Fe (~/«.) for F in

equation (1.1), and let g be an arbitrary element of /j-, we see that F

has a zero of order wiy at z= —Xy. It then follows that FJF is an
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inner factor. Thus Fe is of the form Fe= FFC, so that by Theorem B,

IQL
Conversely, we let 1= [xm'~1eiX'x\jEJ], and show that F (~Z) is a

standard Blaschke product. It follows from Equation (1.1) that F

has a zero of order m, at z = — Xy. Let Fe be the standard Blaschke

product with zeros of order m, at Z= —Xy. Then F/Fe is an inner

factor, so that F=FeFa. According to Theorem B, leQl. From equa-

tion (1.1) we see that IC.I„, so that le = l. This implies that Fa is con-

stant, and completes the proof.

Definition. An inner factor F(z) is said to be nonsingular if

det Fiz) has no zeros (in the upper half plane).

The following results are well known, but we sketch the proof of

Theorem D for the sake of completion:

Theorem C. Every scalar inner factor F can be factored in the form

F=FeFn, where Fe is a Blaschke product and Fn is nonsingular. Fe

and Fn are uniquely determined to within a constant unitary factor.

Theorem D. If F is a scalar Blaschke product, and F=FaFb then

Fa and Fb are Blaschke products.

Proof. We factor Fa and Fb as in Theorem C to obtain Fa = FiF2,

Fh = F3F4 (where Fi and F3 are Blaschke products and F2 and F4 are

nonsingular). We must show that F2 and F4 are constant. We have

F=(FiF3)(F2F4). From Theorem C we see that F2F4 is a constant

unit. It then follows from the properties of inner factors that F2 and

Fi are constant units.

2. Results. We consider the case where V= W and is finite dimen-

sional, and we prove the following two theorems:

Theorem 1. Every inner factor F can be factored in the form F= FeFn

where Fe is a Blaschke product and Fn is nonsingular.

Theorem 2. Fisa Blaschke product if and only if det Fis a Blaschke

product.

We now have a generalization of Theorem D in the

Corollary. If F is a Blaschke product and F= FaFb where Fa and

Fb are inner factors, then Fa and Fb are Blaschke products.

To prove these results we need the following three lemmas; their

proofs will be given in §3.

Lemma 1. If det F is constant, then F is a constant unitary operator.
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Lemma 2. Let k be the span of the exponentials (with exponent X)

which are contained in I, and let F^/. Then dim l\ equals the order of

the zero of det F(z) at z= —X.

Lemma 3. Let /3(s) be the Blaschke product factor of det F. Let

l~F, /,3~j3(z)./, and let le be the span of the exponentials which are con-

tained in I. Then h^lp-

Proof of Theorem 1. Let /«, be the span of the exponentials con-

tained in / (~F), and let Fe~le. According to Theorem B, there exists

an inner factor Fn such that F=FeFn. Taking determinants of both

sides, we have det F = det Fedet F„. Let d, de, and dn denote the

order of the zero at z = — X of det F, det Fe, and det F„ respectively,

so that d = deArdn. We must show that dn = 0. Since / and le have the

same number of linearly independent exponentials with exponent X,

it follows from Lemma 2 that d = de.

Proof of Theorem 2. Assume that det F is a Blaschke product.

We factor F as in Theorem 1: F=FeFn. We must show that Fn is

constant. Taking determinants, we have det F = det Fedet F„. By

virtue of Theorem D, det F„ is a Blaschke product. But since ac-

cording to Theorem 1, det Fn has no zeros, it follows that det F„ is

constant. Then by virtue of Lemma 1, Fn is constant.

Conversely, assume that F is a Blaschke product. Let f3(z) be the

Blaschke product factor of det F. Let l~F and lp-~(3(z)I. According

to Lemma 3, /CZ/3. Then by Theorem B, there exists an inner factor

F0 such that j3(z)I= FFa. Taking determinants, we have /3B(z)

= det Fdet Fa (where « = dim V). By virtue of Theorem D, det F is

a Blaschke product.

3. Proofs of lemmas.

Proof of Lemma 1. Since det F(z) ( = c) is an inner factor, we have

det (F*(z)F(z)) = cc=l. Let {aj(z)\j = l, •••,«} be the eigenvalues

of F*(z)F(z). Since ||F*(z)F(z)\\ gl (for lmz>0), and F*(z)F(z) is

nonnegative, we have 0^oy(z)^l 0 = 1. • • • , w). It then follows

from the equation det(F*(z)F(z)) = H?=1 aj(z) = 1 that all the eigen-

values of F*(z)F(z) are equal to one. Since F*(z)F(z) is symmetric,

we thus have F*(z)F(z)=I. Similarly F(z)F*(z)=I, so that F*(z)

= F~~1(z). Since F(z) is analytic and F~l(z) is continuous, F~1(z) is

analytic. But if F(z) and F*(z) (= F~l(z)) are both analytic, it follows

that F(z) is constant.

The proof of Lemma 2 is based on four sublemmas:

Lemma 3.1. Let /= [weiXs:] where u is a given vector in V and lm>0.

Then F (~l) is (up to a constant unitary operator on the right) of the

form
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(3.1) F = P + biz)Q,

z + X
(3.2) b(z)= ,

z + X

Q is the orthogonal projection onto the one dimensional space spanned

by u, and P = I — Q.

Proof. Let lp~P+biz)Q. Then

HP + biz)Q)hv, u) = ih, P*u) + biz)ihv, Q*u) = biz)Qiv, u).

Since 6( — X) =0, it follows from the equation

/>  OO

iav, u)e-*x dx

o

(where avElp) that I (= [ueax])ElP- From Theorem B we obtain

P+biz)Q = FFa (where F~Z). Taking determinants of both sides of

the factorization equation we have biz)—det F-det Fa. It follows

from Theorem D that either det F or det Fa is constant. If det F were

constant, then by Lemma 1, F would be a constant unitary oper-

ator. Clearly, this would imply that I— [o\. Thus by contradiction

we see that det Fa, and therefore Fa, must be constant, so that l = lp.

Definition. An inner factor of the form (3.1) is called a prime

inner factor (at X).

Lemma 3.2. Let F be an inner factor, and let det F have a zero of

order at least m at z = — X. Then F can be factored in the form F

= (XljLi Fj)Fafor some inner factor Fa, where [Fj\j = l, • ■ ■ , m\ are

prime inner factors iat X).

Proof. We use induction. Take m = l. Since det F( — X) =0, there

exists a vector u (w^O) such that F*(— X)w = 0. Let Z~F. It follows

from the equation

/» 00

(a,, u)e-** dx
o

(where avElL) that ueiXxEl- Let h= [ue**], so that hQl. Then by

Theorem B, we have F= FiFa, where Fi<~Zi. By virtue of Lemma 3.1,

Fi is a prime inner factor (at X).

We now assume that the lemma is true for m = k, and consider

the case m = k + l. By our assumption we have F=iY\j=i F/)Fa.

Taking determinants, we have det F = &*(z)-det Fa. Since the order

of the zero of bkiz) atz= — X is k, we must have det Fa( —X) =0. Then,
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as shown above, Fa = Fk+iFb for some inner factor Fb, where Fk+i is

a prime inner factor (at X).

Lemma 3.3. The space 1= [uxm~1eax\ uE V] corresponds to the inner

factor Fh = bm(z)I.

Let h— [uxm-'1eiKx\uEV]. It follows from the equation

/»»
(aV) u)(ix)keUx dx,

o

for avEli, and F= Fi (^/i), that Fi has a zero of order at least m at

z= — X. That is, F£*'( — X)=0, & = 0, 1, ■ ■ ■ , m — l. Then we can

factor Fi in the form Fi = bm(z)I -Fc, where Fc is an inner factor. We

need only show that Fc is constant. Let h~Fb = bm(z)I. It is easy to

see from equation (3.3), for 7„ = /1, and F=Fb, that /iC/6. Then by

Theorem B we have bm(z)I=(bm(z)I-FAFa. It follows that Fc is a

constant unitary operator.

Lemma 3.4. / (~F) consists of exponentials with exponent X and is

finite dimensional if and only if det F = cbm(z). Also, if det F = cbm(z),

then dim l = m.

Let / consist of exponentials with exponent X, and let q— 1 be the

order of the highest order exponential contained in /. Let lb

= [ux^e^uEV]. Then lQlb. According to Lemma 3.3, b"(z)I~lb.

By virtue of Theorem B, we have bq(z)I= FFa (where F~/). Taking

determinants, we obtain bqn(z) =det F-det Fa (where w = dim V). It

follows from Theorem D that det F is some power of cb(z).

Conversely, let det F = cbm(z). According to Lemma 3.2 we can

factor F in the form

(3.4) ^ = (n^)^,

where F, is the prime inner factor PjA-b(z)Qj. By taking determinants

of both sides of equation (3.4), we see that det Fa = c. Then by virtue

of Lemma 1, F0 is a constant unitary operator. Let Ej = QjA-b(z)Pj

(j = l, ■ ■ ■ , m). Clearly each Ej is an inner factor. Since

( ft *V) FaF* ( n zj) = b™(z)I,

it follows from Theorem B that lQlb. It then follows from Lemma 3.3

that / consists of exponentials with exponent X.
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Again, we assume that det F = cbmiz). We will show that dim l — m.

As shown in the previous paragraph,

i r~ n fa c /6 i~bmiz)i).

According to Theorem B, we have bmiz)I = iJJ^=i Fj)Fa. Taking

determinants, we have &m"(z) =&m(z)-det Fa(z), so that det Fa(z)

= bm(-n~l)(z). By virtue of Lemma 3.2, Fa can be factored in the form

Fa=Tll-m+i Fj. Let -E*=II*=i Fj (k^mn), and let h~Ek (so that
lm = l, and lmn — lb). From Theorem B, we have lk-iC.lk. Since no Fj

is constant, we have lk-iEh- By use of induction, we see that dim lk

^k, and also that dim Zp+^dim lP+k, (k+p^mn). If dim h>k for

some fixed k, then dim Zmn^dim lk+mn — k>mn. But it follows from

Lemma 3.3 that dim Zi = mw. Thus, by contradiction, dimlk = k,

k = l, • • • , mn.

Proof of Lemma 2. Let Z contain (exactly) m linearly independent

exponentials with exponent X, and let l\ be the span of these ex-

ponentials. From Theorem B, we have F= F\Fa. Taking determinants

of both sides, we have det F = det Fx-det Fa. According to Lemma

3.4, det F\ = cbmiz), so that det F has a zero of order at least m at

z=-X.
Conversely, we assume that det F has a zero of order m at z= — X.

According to Lemma 3.2, Fcan be factored in the form F=(TJ™ x F/)Fa

for prime F/s. Let Z„,~TTj=i Fi- since det ITi-i Ft = bm(z), it follows

from Lemma 3.4 that lm contains m linearly independent exponen-

tials with exponent X. Then by Theorem B, we have ImQl, which

completes the proof.

Proof of Lemma 3. Let Z contain an exponential pix)eax of order

m. Since iT1 — eiX,)pix)e{Kx iEI) is an exponential of order m — 1, we

see that Z contains at least m + 1 linearly independent exponentials

with exponent X. By virtue of Lemma 2, /3(z) has a zero of order at

least m + 1, so that

iPi-\)I-hvi-\),u)m = 0,    for k = 0, ■ • • , m.

It then follows from equation (3.3) that all exponentials with ex-

ponent X of order m or less are contained in lg.
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