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A topological semiring is a Hausdorff space 5 together with two

continuous associative operations on 5 such that one (called multi-

plication) distributes across the other (called addition). That is,

x(y-\-z) =xy-\-xz and (x+y)z = X2+ys for all x, y, and z in 5. Note

that, in contrast to the purely algebraic situation [l], [2], we do not

postulate the existence of an additive identity which is a multiplica-

tive zero.

In this note we characterize compact additively commutative

semirings which are multiplicatively left zero simple. This is ac-

complished by first examining semirings which are multiplicatively

groups with zero and then proceeding to the general situation. For

other remarks on compact semirings the reader is referred to [3], [4].

The notation follows closely that of topological semigroups [5].

An additive (a multiplicative) ideal of a semiring 5 is a nonempty

set J such that 5+JVJJ-\-SCZJ(SJyJJS(ZJ)- By a group with zero
we mean a semigroup 5 having a zero 0 (i.e. Ox = xO = 0 for all x in 5)

such that 5\{0} is a group. Here, of course, 0 is a maximal proper

ideal. It is well known that, in compact semigroups, maximal proper

ideals are open [6].

Theorem I. In a compact additively commutative semiring S which is

multiplicatively a group with zero, one of the following holds:

(a) 5+5 = 0,
(b) 5 is a finite field,
(c) 5 is the lattice {0, 1},

(x,    x = y
(d) x + y =  \ and S is finite.

\U,    x 7*- y

Proof. Let 7s[+] represent the set of additive idempotents, i.e.,

elements e such that e-\-e = e. Note that S-\-S, £[+], and 0 + 5 are

multiplicative ideals so that each is either all of 5 or the single point 0.

If 5+5 = 0 then we have (a) so suppose 5+5 = 5. This and 7s[+]

= {0} give that 5 is a skew field [7, p. 26]. However {0} is a maximal

proper multiplicative ideal. Thus {0} is open and 5 is discrete. There-

fore 5 is finite. Now a finite skew field is a field so we have (b). Thus

assume £[+] =5. From compactness we have a minimal additive
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ideal i£[+] which is a group. Since it must also be idempotent,

AT[+] is a single point, say z. Clearly z-\-x = z for all x in 5. Suppose

0 + 5 = 5. This implies z^O. Also z2 = z(z + l) =z2 + z = z so 2=1 (1

being the multiplicative identity). Select u and v in 5 such that

ut^Ot^v. We have u +v = u+ (vu~l)u = (1 + (vwl))u = (z-\-(vu~l))u = zu

= \u — u and, in the same way, u-\-v = v so that v = u. Thus 5 is the

lattice {0, 1} i.e. case (c). Finally we may assume 0 + 5 = 0. Suppose

there are x and y in 5 such that xj^Oj^y, x-^-S^y-^-S, and (x + 5)

n(y + 5)^{0|. Pick p in (x + S)C\(y + S) such that p^O. Clearly

£ + 5C(x + 5)Pi(y + 5). Thus p + S is properly contained in x + 5 or

y-\-S since they are unequal. Both cases, however, lead to a contra-

diction (of Theorem 3.4 in [5]) since p + S is compact and (for exam-

ple) xp~1(p + S)=x + S. Therefore x + S = y + S or (x + S)l^(y + S)

= {o} for all x and y in 5. If r£x + 5and r^O then rG(x+5)n(r + 5)

so x + 5 = r + 5. Thus x£> + 5 giving an h in 5 so that x = r-\-h. Also,

since r£x + 5, there is a k in 5 such that r=x-\-k. Hence x = h-\-r

= h-\-(r-\-r) = (h-\-r)-\-r = x-\-r = x-\-(x-\-k) = (x + x) +& = x + & = r.

Consequently x + 5={0, x} for all x in 5. Thus if x+y^0 then

x+y = x and similarly x+y = y so x = y. Therefore, for any x and y

in 5, x+y = 0 if X9^y and x+y = x if x = y.

We shall now show that 5\ {0} is discrete. To see this choose

x=^0 and note that if {x} is not open then there exists a net {xa}—>x

such that xa9^x for all a. Now x«+x = 0 for all a. But, by continuity

of addition, {xa+x} —>x+x which is x. Thus x = 0. This is a contra-

diction so {x} is an open set for x?^0. On the other hand, 5\}o} is a

maximal multiplicative group and thus closed. Thus {o} is open and

5 is discrete. Now since 5 is compact it is finite. This completes the

proof.

With the aid of Theorem I we are able to make a more general asser-

tion in preparation for which we shall mention a lemma and two

examples. A semigroup 5 is said to be left zero simple if 5 has a zero

element 0 and each left ideal of 5 is either 5 or 0. Recall that a left

ideal of 5 is a nonempty subset L of 5 such that SLCZL.

Lemma. If S is a left zero simple semigroup having more than two

elements then 5\{o} is a left simple semigroup.

The proof of this lemma is straightforward and can be found in

[8, p. 68 ]. Of course, if 5 is compact then so is 5\ {0}, since {0} is a

maximal proper ideal.

Example I. Let (5, +) be a compact commutative idempotent

semigroup with an isolated unit 0 (i.e. 0+x = x+0 = x for all x in 5).

For each x and y in 5 such that xj^O^y, define xy = x. For each x
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in 5, define x0 = 0x = 0. It is a simple matter to check that (5, +, •)

is a semiring and we shall omit the argument. 5 is the semiring in

which we are interested.

If A is a closed ideal of a compact semigroup 5 then we can define

a closed congruence a by identifying the points of A. This induces a

semigroup S/a which is also called S/A [7]. We define S/A in a

similar way in case A is a closed multiplicative and additive ideal of

a compact semiring 5.

Example II. Let (E, +) be a compact commutative idempotent

semigroup with isolated zero 0 (i.e. 0+x = x+0 = 0 for all x in E).

For each x and y in E such that x^O^y, define xy = x. For each x

in 5, define x0 = 0x = 0. Clearly (E, +, •) is a semiring, Let (77, •)

be a finite group with zero 0. For each x and y in 77, let x+y = x if

x = y and x+y = 0 if x^y. Clearly (77, +, •) is a semiring. Thus

72X77 is a semiring under coordinate-wise addition and multiplica-

tion. Also £x{o}W{o}x77 is a closed ideal under both addition

and multiplication. Thus

_EXH
EX {0} U {0} X H

is a semiring and this is the example in which we are interested.

Theorem II. In a compact additively commutative semiring 5 which

is multiplicatively left zero simple, one of the following holds:

(a) 5+5 = 0,

(b) 5 is a finite field,
(c) 5 is as in Example I,

(d) 5 is as in Example II.

Proof. If 5+5 = 0 we have part (a) so suppose 5+5^0. Now

5 + 5 is a multiplicative ideal so 5+5 = 5. Since the set of additive

idempotents, £[+], is a multiplicative ideal £[+]=0 or £[+] =5.

Suppose £[+] =0. Then 5 is an additive group [5, Theorem 4.3] and

thus, in view of the lemma, an integral domain. Because {0} is a

maximal ideal and thus open, 5 is finite. But a finite integral domain

is a field and we have part (b).

Suppose E [ + ] = 5. Now the minimal additive ideal K [ + ] must be

an idempotent group, i.e., 7C[+] is a single point, say z. Of course z

is an additive zero (i.e., z+x = x-\-z = z for all x in 5).

Suppose sj^O. By the lemma 5\|0{ is multiplicatively a simple

semigroup and thus the union of multiplicative groups [5]. Hence z

is in some multiplicative group. If e is the identity of this group, we
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have ez = ze = z so that zz = (z+e)z = zz+z = z. Now, according to

pages 98 and 99 of [5], if 5\{o} contained a nontrivial multiplicative

group then z(5\{o}) would be isomorphic to it. Furthermore, zS is

a subsemiring and z5 = z(5\ {0}) U {0}. Applying Theorem I, we see

that zS can have only two points. Thus z(5\{0}) is a single point.

Therefore 5\{o} is not only multiplicatively left simple but also it

contains no nontrivial multiplicative subgroups. From Theorem 2.5 of

[5], we see that 5\{o} is multiplicatively idempotent. If p, g£5\{o}

then there is an r in 5\{o} so that rq = p. Thus pq=(rq)q = r(qq)

= rq=p. Finally, for any x in 5, we see that 0+x = x0+xz = x(0+z)

= xz = x, i.e., 0 is an additive unit. Therefore 5 is as in Example I

and we have (c).

Now suppose z = 0. Let E[-] represent the collection of multipli-

cative idempotent and pick e and / in E [ ■ ]\ {0}. Then Sf=f so there

is a g in 5such that e = g/and ef= (gf)f = g(ff) =gf=f- Also(e+/)(e+f)
= ee+e/+/e+// = e + e+/+/ = e+/ so e+/E-E[-]. Thus we have

shown that E[-] is a semiring having the properties of E in Example

11. Select any element e0 of E [ ■ ]\ {0}. As in the preceding paragraph

e05 is a semiring which is multiplicatively a group with zero. Accord-

ing to Theorem I, eo5 enjoys the properties of H in Example II.

Define:

E[-]XepS

' E[-] X {0} U{0} XeoS~*

by $((/, e0x)) =/e„x. Notice that (£[-]Xe05)\(£[-]X {o}U{o} Xe05)

= (£[-]\{o})\(e05x{o}). Now, according to Theorem 1 of [9],*

restricted to (E [ ■ ]\ {0}) X (eo5\ {0}) is a multiplicative isomorphism

onto 5\{0}. On the other hand, 3>-l(0) =E[- ]X {0}U{0} Xe0S

which is open and closed. Thus <P is a multiplicative isomorphism.

Choose any x and y in e05 and e and /in E[- ]. Suppose x^y.

Then f>((e, x)+(/, y))=*((e+/, x+y)) =$((«+/, 0))=0. Also

$((e, x) +$((/, y)) =ex+/y. If neither e nor/ is 0 we have e(ex+/y)

= ex+e/y = ex-\-ey = e(x-\-y) =e0 = 0 so ex+fy = 0. If either e or / is 0,

clearly ex+/y = 0. Thus "t>((e, x) + (/, y))=0=$((e, x))+$((/, y)). In

case x = y we have 4>((e, x)+(/, y)) =$((e+/, x)) =ex+/y =<i>((e, x))

+^((/i j))- Thus f> is an isomorphism and we have part (d). This

concludes the proof.

As a trivial consequence of the above theorem we have the fol-

lowing:

Corollary. If S is a compact connected additively commutative

semiring which is multiplicatively left zero simple then 5+5 = 0.
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