A DISCON JUGACY CONDITION FOR
 $y^{\prime \prime \prime}+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0$
 RONALD M. MATHSEN ${ }^{1}$

1. Introduction. An nth order homogeneous linear differential equation is said to be disconjugate on the interval I of the real numbers provided no nontrivial solution of the equation has more than $n-1$ zeros (counting multiplicity) in I. C. de la Vallée Poussin in 1929 [5] and Zeev Nehari in 1962 [4] have developed conditions under which a general nth order linear differential equation will be disconjugate. For the 3 rd order equation $L[y]=y^{\prime \prime \prime}+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y$ $=0$ these results are respectively the following:
(i) $L[y]=0$ is disconjugate on the interval I if each a_{i} is continuous and bounded on I and $1 \geqq A h+B h^{2} / 2+C h^{3} / 6$ where $A=\sup \left|a_{2}(x)\right|, B=\sup \left|a_{1}(x)\right|$ and $C=\sup \left|a_{0}(x)\right|$ on I and h is the length of I.
(ii) $L[y]=0$ is disconjugate on the compact interval $[a, b]$ provided each a_{i} is continuous on $[a, b]$ and

$$
1 \geqq \frac{(b-a)^{2}}{8} \int_{a}^{b}\left|a_{0}(x)\right| d x+\frac{b-a}{4} \int_{a}^{b}\left|a_{1}(x)\right| d x
$$

$$
\begin{equation*}
+\frac{1}{2} \int_{a}^{b}\left|a_{2}(x)\right| d x . \tag{1}
\end{equation*}
$$

In 1963 Lasota [3] proved that $L[y]=0$ is disconjugate on the compact interval $[a, b]$ provided each a_{i} is continuous on $[a, b]$ and $1 \geqq A h / 4+B h^{2} / \pi^{2}+C h^{3} / 2 \pi^{2}$. If $a_{1}(x) \leqq 0$ on $[a, b]$,

$$
\begin{equation*}
1 \geqq A h / 4+C h^{3} / 2 \pi^{2} \tag{2}
\end{equation*}
$$

together with the continuity of each a_{i} is sufficient to insure disconjugacy of $L[y]=0$ on $[a, b]$. The principal result of this paper is

Theorem 2. $L[y]=0$ is disconjugate on $[a, b]$ provided $a_{1}(x) \leqq 0$ on $[a, b]$, each a_{i} is continuous on $[a, b]$ and

$$
\begin{equation*}
(2 h+1) C[\exp (2 h A)-\exp (h A)-h A] / A^{2} \leqq 1 \tag{3}
\end{equation*}
$$

where $2 h=b-a, A=\max \left|a_{2}(x)\right| \neq 0$ and $C=\max \left|a_{0}(x)\right|$ over $[a, b]$.
Received by the editors July 17, 1965.
${ }^{1}$ This paper is a portion of a doctoral thesis written under the supervision of Professor Lloyd K. Jackson at the University of Nebraska.

The differential equation $y^{\prime \prime \prime}+x^{2} y^{\prime \prime}+x^{7} y^{\prime}+(x+1) y / 600=0$ satisfies the conditions of Theorem 2 on $[-2,0]$ and is therefore disconjugate on $[-2,0]$; however neither (1) nor (2) are satisfied for this equation on $[-2,0]$.
2. An existence theorem. The following existence theorem will be used extensively in the proof of Theorem 2:

Theorem 1. Let the function f which maps the strip

$$
S=\{(x, r, s, t): a \leqq x \leqq b,|r|+|s|+|t|<+\infty\}
$$

into the reals be continuous on S and satisfy
(i) $f(x, r, s, t)$ is nondecreasing in s for fixed x, r and t;
(ii) given a compact subset T of S there is a constant K^{*} depending on T such that for $\left(x, r, s, t_{1}\right)$ and $\left(x, r, s, t_{2}\right)$ in $T\left|f\left(x, r, s, t_{1}\right)-f\left(x, r, s, t_{2}\right)\right|$ $\leqq K^{*}\left|t_{1}-t_{2}\right|$;
(iii) given a positive constant M there is another positive constant K depending on M such that $|f(x, r, 0, t)-f(x, r, 0,0)| \leqq K|t|$ for $|r| \leqq M,|t|<+\infty$ and x in $[a, b]$.

Then given a constant $M>0$ the BVP (Boundary Value Problem)

$$
\begin{equation*}
y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right), \quad y(a)=y^{\prime}(a)=y^{\prime}(b)=0 \tag{4}
\end{equation*}
$$

has a solution for $0<b-a \leqq 2 \delta$ whenever

$$
\begin{equation*}
(2 \delta+1) K^{\prime}[\exp (2 \delta K)-\exp (\delta K)-\delta K] / K^{2} \leqq M \tag{5}
\end{equation*}
$$

where $K^{\prime}=\sup \{|f(x, r, 0,0)|: a \leqq x \leqq b,|r| \leqq M\}$.
Proof. Let $M>0$ be given and let $s_{1}(x)=K^{-2} K^{\prime}(\exp [K(b-x)]$ $-\exp [K(b-a)])+K^{\prime}(x-a) / K$. Then $s_{1}(a)=0, s_{1}^{\prime}(x) \leqq 0$ and $s_{1}^{\prime \prime}$ $=-K s_{1}^{\prime}+K^{\prime}$ on $[a, b]$. Also $s_{1}^{\prime \prime}(x)=K\left|s_{1}^{\prime}(x)\right|+K^{\prime} \geqq f\left(x, r, 0, s_{1}^{\prime}(x)\right)$ $-f(x, r, 0,0)+f(x, r, 0,0)$ for any x in $[a, b]$ and any r with $|r| \leqq M$. Therefore $s_{1}^{\prime \prime}(x) \geqq f\left(x, r, s_{1}(x), s_{1}^{\prime}(x)\right)$ for x in $[a, b]$ and $|r| \leqq M$. Similarly if

$$
\begin{aligned}
s_{2}(x) & =K^{-2} K^{\prime}(\exp [K(x-a)]-\exp [K(b-a)])-K^{\prime}(x-b) / K, \\
S_{1}(x) & =K^{-2} K^{\prime}(\exp [K(b-a)]-\exp [K(b-x)])-K^{\prime}\left(x-a_{1}\right) / K
\end{aligned}
$$

and

$$
S_{2}(x)=K^{-2} K^{\prime}(\exp [K(b-a)]-\exp [K(x-a)])+K^{\prime}(x-b) / K,
$$

we get the following inequalities: $s_{2}^{\prime \prime}(x) \geqq f\left(x, r, s_{2}(x), s_{2}^{\prime}(x)\right), S_{1}^{\prime \prime}(x)$ $\leqq f\left(x, r, S_{1}(x), S_{1}^{\prime}(x)\right)$ and $S_{2}^{\prime \prime}(x) \leqq f\left(x, r, S_{2}(x), S_{2}^{\prime}(x)\right)$ for x in $[a, b]$ and $|r| \leqq M$.

Next let z be a continuous real valued function on $[a, b]$. Then the BVP

$$
\begin{equation*}
y^{\prime \prime}(x)=f\left(x, z(x), y(x), y^{\prime}(x)\right), \quad y(a)=0=y(b) \tag{6}
\end{equation*}
$$

has a unique solution [1 ; Theorem 6.3]. For each such z let u_{z} be the solution to (6). By the inequalities in the previous paragraph whenever $|z(x)| \leqq M$ on $[a, b] s_{1}$ and s_{2} are subfunctions for (6) and S_{1} and S_{2} are superfunctions for (6) [1; Theorem 2.2]. Moreover the values of s_{1}, s_{2}, S_{1} and S_{2} at a and b are such that s_{1} and s_{2} are underfunctions and S_{1} and S_{2} are overfunctions for (6) [$1 ;$ p. 1058]. Then $\max \left[s_{1}(x), s_{2}(x)\right]$ is an underfunction for (6) [2; Theorem 3], and therefore $u_{2}(x) \geqq \min \left(\max \left[s_{1}(x), s_{2}(x)\right]\right)=s_{1}([a+b] / 2)=s_{2}([a+b] / 2)$. Similarly $u_{z}(x) \leqq S_{1}([a+b] / 2)=S_{2}([a+b] / 2)=-s_{1}([a+b] / 2)$. Therefore $|z(x)| \leqq M$ implies

$$
\left|u_{z}(x)\right| \leqq K^{-2} K^{\prime}(\exp [K(b-a)]-\exp [K(b-a) / 2]-K(b-a) / 2)
$$

for all x in $[a, b]$.
Let $\|\cdot\|$ denote the sup norm on $C[a, b]$. We shall show that there is a constant $M^{*}>0$ such that $\left\|u_{z}^{\prime}\right\| \leqq M^{*}$ whenever $\|z\| \leqq M$. Let x_{0} be some point in (a, b), and consider the cases (i) $u_{z}\left(x_{0}\right) \leqq 0$ and (ii) $u_{z}\left(x_{0}\right)>0$. In (i) let

$$
\begin{aligned}
s_{1}^{*}(x)= & K^{-2} K^{\prime}\left(\exp [K(b-x)]-\exp \left[K\left(b-x_{0}\right)\right]\right) \\
& +K^{\prime}\left(x-x_{0}\right) / K+u_{z}\left(x_{0}\right) .
\end{aligned}
$$

Since s_{1}^{*} is a subfunction, $s_{1}^{*}\left(x_{0}\right)=u_{z}\left(x_{0}\right)$ and $s_{1}^{* \prime}(x) \leqq 0$ for $x \geqq x_{0}$, it must be true that $u_{2}^{\prime}\left(x_{0}\right) \geqq s_{1}^{* \prime}\left(x_{0}\right)$. Also if

$$
\begin{aligned}
s_{2}^{*}(x)= & K^{-2} K^{\prime}\left(\exp [K(x-a)]-\exp \left[K\left(x_{0}-a\right)\right]\right) \\
& -K^{\prime}\left(x-x_{0}\right) / K+u_{z}\left(x_{0}\right),
\end{aligned}
$$

then $u_{2}^{\prime}\left(x_{0}\right) \leqq s_{2}^{* \prime}\left(x_{0}\right)$. Thus

$$
\begin{equation*}
\left|u_{z}^{\prime}\left(x_{0}\right)\right| \leqq K^{-1} K^{\prime}(\exp [K(b-a)]+1) \tag{7}
\end{equation*}
$$

in case (i). For case (ii) change S_{1} and S_{2} to S_{1}^{*} and S_{2}^{*} as s_{1} and s_{2} were changed in case (i). Then (7) can be shown to hold in this case also. By using one underfunction and one overfunction (7) can be shown to hold for $x=a$ and $x=b$ also.

Now let B^{*} be the compact convex subset of $C[a, b]$ consisting of all z which satisfy $\|z\|+H(z) \leqq M$ where

$$
H(z)=\sup |[z(u)-z(v)] /(u-v)|
$$

taken over all distinct u and v in $[a, b]$. Define the mapping F from B^{*} into $C[a, b]$ by $F(z)=w$ where $w(x)=\int_{a}^{x} u_{z}(t) d t$ for each x in $[a, b]$. Pick $b-a \leqq 2 \delta$ and let $E(x)=\exp (2 x)-\exp (x)-x$. Then $|w(x)|$ $\leqq 2 \delta K^{\prime} K^{-2} E(\delta K)$ and $|[w(u)-w(v)] /(u-v)| \leqq K^{\prime} K^{-2} E(\delta K)$. Thus w is B^{*} provided (5) holds.

Next we show that F is continuous on B^{*}. Suppose that F is not continuous at z_{0} in B^{*}. Then there is an $\epsilon_{0}>0$ and a sequence $\left\{z_{n}\right\}$ in B^{*} such that $\left\|z_{n}-z_{0}\right\|<1 / n$ but $\left\|F\left(z_{n}\right)-F\left(z_{0}\right)\right\| \geqq \epsilon_{0}$ for all $n>0$. Let $u_{n}^{\prime \prime}=f\left(x, z_{n}, u_{n}, u_{n}^{\prime}\right)$. Then the sequences $\left\{u_{n}\right\}$ and $\left\{u_{n}^{\prime}\right\}$ are both uniformly bounded sequences. Therefore there is a u_{0} in $C^{2}[a, b]$ and a sequence $r(n)$ of positive integers such that for $i=0,1,2$, $u_{T(n)}^{(i)}$ converges uniformly to $u_{0}^{(i)}$ and $u_{0}^{\prime \prime}=f\left(x, z_{0}, u_{0}, u_{0}^{\prime}\right)$. Let w_{n} $=F\left(z_{r(n)}\right)$ and $w_{0}=F\left(z_{0}\right)$. Then $\left\|w_{n}-w_{0}\right\| \leqq(b-a)\left\|u_{r(n)}-u_{0}\right\|$ which approaches 0 as n approaches ∞. This is impossible, and hence F must be continuous on B^{*}. Then by the Schauder-Tychonoff fixed point theorem there is a point z in B^{*} such that $z=F(z)$. This z is a solution to (4).

If we were to let $F(z)=w$ where $w(x)=-\int_{x}^{b} u_{z}(t) d t$ in the above proof, we would get an existence theorem for a BVP of the type $y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right), y^{\prime}(a)=y(b)=y^{\prime}(b)=0$ under the same conditions as in Theorem 1.

Corollary. If the conditions of Theorem 1 are unchanged except that (5) is replaced by $(2 \delta+1) \delta K^{\prime} \exp (2 \delta K) \leqq M K$, the conclusion of Theorem 1 is still valid.

Proof. Simply note that $E(x) \leqq x \exp (2 x)$ for any $x>0$.
3. The disconjugacy condition. The Cauchy function $K(x, s)$ for the equation $L[y]=0$ is defined as follows: for s in $[a, b], y(x)$ $\equiv K(x, s)$ is the solution to the IVP $L[y]=0, y(s)=y^{\prime}(s)=0, y^{\prime \prime}(s)=1$.

Lemma. Let a_{0}, a_{1} and a_{2} be continuous on $[a, b]$. Then $L[y]=0$ is disconjugate on $[a, b]$ if and only if $K(x, s)>0$ for each x and s in $[a, b]$ with $x \neq s$.

Proof. Clearly if $L[y]=0$ is disconjugate on $[a, b], K(x, s)$ is positive for $x \neq s$. Let y be a solution to $L[y]=0$ with zeros at $x_{1}<x_{2}$ $<x_{3}$ in $[a, b]$. We shall show that $K(x, s)>0$ for $x \neq s$ implies $y \equiv 0$ in $[a, b] . y(x)=c_{1} u_{1}(x)+c_{2} u_{2}(x)$ for all x in $[a, b], L\left[u_{i}\right]=0$ and $u_{i}^{(j)}\left(x_{1}\right)$ $=\delta_{i j}$ (the Kronecker δ) for $i=1$ and 2 and $j=0,1$ and 2. But $u_{2}(x)$ $\equiv K\left(x, x_{1}\right)$, so $u_{2}(x)>0$ for $x \neq x_{1}$. Now $y\left(x_{2}\right)=y\left(x_{3}\right)=0$, so if $c_{1} \neq 0$, then $(d / d x)\left[y(x) / u_{2}(x)\right]=c_{1}\left[u_{1}^{\prime}(x) u_{2}(x)-u_{1}(x) u_{2}^{\prime}(x)\right] /\left[u_{2}(x)\right]^{2}$ has a zero, say x^{*}, in $\left(x_{2}, x_{3}\right)$. Let $h(x)=u_{1}(x) u_{2}\left(x^{*}\right)-u_{1}\left(x^{*}\right) u_{2}(x)$. Then $L[h]=0, h\left(x_{1}\right)=h\left(x^{*}\right)=h^{\prime}\left(x^{*}\right)=0$. But $h^{\prime \prime}\left(x^{*}\right) \neq 0$ implies $h(x)$ is a nonzero multiple of $K\left(x, x^{*}\right)$, and hence $h\left(x_{1}\right) \neq 0$. Also $h^{\prime \prime}\left(x^{*}\right)=0$ implies $h(x)=0$ for all x in $[a, b]$, and then $u_{1}(x)=u_{2}(x) u_{1}\left(x^{*}\right) / u_{2}\left(x^{*}\right)$ which is impossible. This means that $c_{1}=0$, and since $y\left(x_{2}\right)=c_{2} u_{2}\left(x_{2}\right)$ $=0, c_{2}=0$ also. Thus $y \equiv 0$ in $[a, b]$. It is clear that any nontrivial
solution having a double zero in $[a, b]$ can have no other zero in $[a, b]$. Thus $L[y]=0$ is disconjugate on $[a, b]$.

Theorem 2. $L[y]=0$ is disconjugate on $[a, b]$ provided $a_{1}(x) \leqq 0$, each a_{i} is continuous on $[a, b]$ and

$$
\begin{equation*}
(2 h+1) C E(h A) / A^{2} \leqq 1 \tag{3}
\end{equation*}
$$

where $2 h=b-a, A=\max a_{2}(x) \neq 0$ and $C=\max a_{0}(x)$ over $[a, b]$.
Proof. We shall show that the Cauchy function $K(x, s)$ is positive for x and s in $[a, b]$ with $x \neq s$. Let g be some continuous function on [a, b]. Then given an $M>0$ by Theorem 1 the BVP

$$
\begin{equation*}
L[y]=g, \quad y(c)=y^{\prime}(c)=y^{\prime}(d)=0 \tag{8}
\end{equation*}
$$

has a solution on the interval $[c, d]$ or $[d, c]$ for any $c \neq d$ in $[a, b]$ with $|c-d| \leqq 2 \delta$ provided $(2 \delta+1)(C M+\|g\|) E(\delta A) / A^{2} \leqq M$ or

$$
\begin{equation*}
(2 \delta+1) C E(\delta A) / A^{2} \leqq 1-\|g\| E(\delta A)(2 \delta+1) / A^{2} M . \tag{9}
\end{equation*}
$$

Let c and d satisfy $a \leqq c<d<b$, and let $d-c=2 \delta$. Then $(2 \delta+1) C E(\delta A) / A^{2}<1$ since $\delta<h$. It follows that if g is defined by

$$
g(x)=\epsilon\left[a_{0}(x)(x-c)^{3}+3 a_{1}(x)(x-c)^{2}+6 a_{2}(x)(x-c)+6\right]
$$

and if $\epsilon>0$ is chosen sufficiently small, then (9) will hold. We conclude that (8) has a solution $u(x)$ on $[c, d]$ for this g. From the initial conditions it follows that

$$
u(x) \equiv c_{1} K(x, c)+(x-c)^{3} .
$$

Then $u^{\prime}(d)=c_{1} K^{\prime}(d, c)+3(d-c)^{2}=0$ implies that $K^{\prime}(d, c) \neq 0$. Since $K^{\prime \prime}(c, c)=1$, it follows that $K(x, c)>0$ for $c<x \leqq b$. Similarly, if $a<c \leqq b$, then $K(x, c)>0$ for $a \leqq x<c$. It follows from the Lemma that $L[y]=0$ is disconjugate on $[a, b]$.

Corollary 1. $L[y]=0$ is disconjugate on $[a, b]$ provided $a_{0}, a_{1} \leqq 0$ and a_{2} are continuous on $[a, b]$ and $h(2 h+1) C \exp (2 h A) / A \leqq 1$ where $2 h=b-a$.

Corollary 2. If $a_{2}=0$ on $[a, b]$, then $L[y]=0$ is discongugate on $[a, b]$ provided a_{0} and $a_{1} \leqq 0$ are continuous on $[a, b]$ and $3 h^{2}(2 h+1) C$ $\leqq 2$.

Proof. Simply observe that $\operatorname{limit}_{x \rightarrow 0+} E(h x) / x^{2}=3 h^{2} / 2$.
It is known [2, Corollary of Theorem 7] that the second order differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$ is disconjugate on $[a, b]$ provided p and q are continuous on $[a, b]$ and $q(x) \leqq 0$ on $[a, b]$. Thus
$y^{\prime \prime \prime}+a_{2} y^{\prime \prime}+a_{1} y^{\prime}=0$ is disconjugate on $[a, b]$ provided a_{2} and $a_{1} \leqq 0$ are continuous on $[a, b]$. Theorem 2 gives a type of continuity condition for the disconjugacy of $L[y]=0$ with respect to a_{0} at $a_{0} \equiv 0$. If the interval $[a, b]$ is fixed and a_{2} and $a_{1} \leqq 0$ are continuous on $[a, b]$, one can make the equation $L[y]=0$ disconjugate on $[a, b]$ by choosing $\left\|a_{0}\right\|$ small enough.

References

1. J. W. Bebernes, A subfunction approach to a boundary value problem for ordinary differential equations, Pacific J. Math. 13 (1963), 1053-1066.
2. Leonard Fountain and Lloyd Jackson, A generalized solution of the boundary value problem for $y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$, Pacific J. Math. 12 (1962), 1251-1272.
3. A. Lasota, Sur la distance entre les zéros de l'équation différentielle linéaire du troisième ordre, Ann. Polon. Math. 13 (1963), 129-132.
4. Zeev Nehari, On an inequality of Lyapunov, Studies in Mathematical Analysis and Related Topics, pp. 256-261, Stanford Univ. Press, Stanford, Calif., 1962.
5. C. de la Vallée Poussin, Sur l'équation différentielle linéaire du second ordre, J. Math. Pures Appl. 8 (1929), 125-144.

University of Nebraska and Concordia College

