A DISCONJUGACY CONDITION FOR
" +ayy' +ay +ay=0

RONALD M. MATHSEN!

1. Introduction. An #nth order homogeneous linear differential
equation is said to be disconjugate on the interval I of the real num-
bers provided no nontrivial solution of the equation has more than
n—1 zeros (counting multiplicity) in I. C. de la Vallée Poussin in
1929 [5] and Zeev Nehari in 1962 [4] have developed conditions un-
der which a general nth order linear differential equation will be dis-
conjugate. For the 3rd order equation L[y]=y""4asy" +a1y’+aey
=0 these results are respectively the following:

(i) L[{y]=0 is disconjugate on the interval I if each a; is continu-
ous and bounded on I and 1 = Ak + Bh%/2 + Ch3/6 where
A =sup |a2(x)|, B=sup |al(x)[ and C=sup |ao(x)| on I and & is
the length of I.

(ii) L[y]=0 is disconjugate on the compact interval [a, b] pro-
vided each a; is continuous on [a, b] and

b_ 2 b b_ b
( 80)1;|ao(x)|dx+——1—aj;|al(x)|dx

1 b
+ —z—f I az(x) { dx.
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M

In 1963 Lasota [3] proved that L[y]=0is disconjugate on the com-
pact interval [a, b] provided each a; is continuous on [a, b] and
1= Ah/4+Bh?/w?+Ch/2n% If ai1(x) <0 on [a, b],

) 12> AR/4 + Ch3/2x?

together with the continuity of each a; is sufficient to insure discon-
jugacy of L[y]=0 on [a, b]. The principal result of this paper is

THEOREM 2. L[y] =0 is disconjugate on [a, b] provided a,(x) <0 on
la, b], each a; is continuous on [a, b] and

3) (2h + 1)Clexp(2hA) — exp(hd) — hA]/A? £ 1
where 2h=b—a, A =max |ax(x)| %0 and C=max |a(x)| over [a, b].
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The differential equation """ +x2y"" +x7y' +(x+1)y/600=0 satis-
fies the conditions of Theorem 2 on [—2, 0] and is therefore discon-
jugate on [—2, 0]; however neither (1) nor (2) are satisfied for this
equation on [—2, 0].

2. An existence theorem. The following existence theorem will be
used extensively in the proof of Theorem 2:

THEOREM 1. Let the function f which maps the strip
S={(xrst):asx=0b, Irl + |s| + ltl <+ o}

into the reals be continuous on S and satisfy

@A) f(x, 7, s, t) is nondecreasing in s for fixed x, r and t;

(i1) given a compact subset T of S thereis a constant K* depending on
T such that for (x,r, s, t) and (x,7,5,b) in T |f(x, 7, S, b)) —f(x, 7, s, t2)|
SK*[t—bl;

(iii) given a positive constant M there is another positive constant K
depending on M such that |f(x, 7, 0, ) —f(x, 7, 0, 0)| SK|¢| for
|7| <M, |t| <+ o and x in [a, b].

Then given a constant M >0 the BVP (Boundary Value Problem)

cy ¥ = f(x9,9,9"), ¥@ =y@)=y'0®) =0
has a solution for 0 <b—a =26 whenever
) (26 4 1)K'[exp(26K) — exp(8K) — 8K|/K2 < M

where K’ =supf{|f(x, 7,0, 0)|:asx=b, |r| S M}.

Proor. Let M >0 be given and let si(x) =K—2K’(exp[K(b—=x)]
—exp[K(b—a)])+K'(x—a)/K. Then s1(a)=0, s{(x)<0 and s’
= —Ks/4+K' on [a, b]. Also s{’(x)=K|s{(x)| +K'zf(x, r, 0, si(x))
—f(x, r, 0, 0)+f(x, 7, 0, 0) for any x in [a, b] and any 7 with || < M.
Therefore s}’ (x) =f(x, r, s1(x), si(x)) for x in [a, b] and |7| =M.
Similarly if

sa(x) = K—2K'(exp[K(x — a)] — exp[K(b — 9)]) — K'(x — )/K,

Si(x) = K—2K'(exp[K (b — a)] — exp[K (b — #)]) — K'(x — a1)/K
and

Sa(x) = K—2K'(exp[K (b — a)] — exp[K(x — @)]) + K'(x — D)/K,

we get the following inequalities: s3'(x) 2f(x, 7, s:(x), s3(x)), Si'(x)
<f(x, r, Si(x), S{(x)) and S} (x) £f(x, r, Sa(x), Sz(x)) for x in [a, b]
and [r| <M.

Next let z be a continuous real valued function on [a, b]. Then the
BVP
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(6) y'(x) = f(=, 2(x), y(x), ¥'(x)),  y(a) = 0= y(b)

has a unique solution [1; Theorem 6.3]. For each such z let , be the
solution to (6). By the inequalities in the previous paragraph when-
ever |z(x)| <M on [a, b] 51 and s; are subfunctions for (6) and S
and S, are superfunctions for (6) [1; Theorem 2.2]. Moreover the
values of s, 59, S; and S; at @ and b are such that s; and s; are under-
functions and S; and S, are overfunctions for (6) [1; p. 1058]. Then
max [s1(x), s:(x)] is an underfunction for (6) [2; Theorem 3], and
therefore u,(x) = min(max [s1(x), s;(x)]) =s1([a+b]/2) =s:([a+0]/2).
Similarly #.(x) < Si([e +0]/2) = S:([a +0]/2) = — si([a + b]/2).
Therefore |2(x)| <M implies

Iu,(x)[ <K—2K'(exp[K(b—a)] —exp[K (b —a)/2] —K(b—a)/2)

for all x in [a, b].

Let || -|| denote the sup norm on Cl[a, ]. We shall show that there
is a constant M*>0 such that ||u}| < M* whenever ||z]| <M. Let
x9 be some point in (a, b), and consider the cases (i) #,(xo) <0 and
(ii) #.(x0)>0. In (i) let

s¥(x) = K2K'(exp[K(b — x)] — exp[K(b — x0)])
+ K'(x — x0)/K + u.(x0).

Since s} is a subfunction, s¥(xe) =u.(x,) and sf’(x) <0 for x=x,, it
must be true that «}(xo) = s}/ (). Also if

s#(x) = KK’ (exp[K(x — a)] — exp[K(z0 — a)])
— K'(x — %0)/K + u.(x0),
then #(xo) =s3’(x0). Thus
) | ul ()| = KK (explKG — )] + 1)

in case (i). For case (ii) change S; and S, to SF and S as s; and s
were changed in case (i). Then (7) can be shown to hold in this case
also. By using one underfunction and one overfunction (7) can be
shown to hold for x=a and x =5 also.

Now let B* be the compact convex subset of C[a, b] consisting of
all z which satisfy ”z” 4+ H(z) £ M where

H(z) = sup| [3(w) — 2()]/(w — v) |

taken over all distinct « and v in [a, b]. Define the mapping F from
B* into Cla, b] by F(z) =wwhere w(x) = [Zu,(t)dt for each x in [a, b].
Pick b—a <26 and let E(x)=exp(2x) —exp(x) —x. Then lw(x)|
<20K'K—2E(8K) and | [w(u) —w(v) ]/(u—v)| K'K-2E(8K). Thus w
is B* provided (5) holds.



630 R. M. MATHSEN [June

Next we show that F is continuous on B*. Suppose that F is not
continuous at z, in B*. Then there is an ¢ >0 and a sequence {z,}
in B* such that Hz,,—zon <1/n but IIF(zn)—F(zO)H =€ for all #>0.
Let w)) =f(x, 2., %a, #4;). Then the sequences { u,,} and {u,',} are
both uniformly bounded sequences. Therefore there is a %, in C?[a, b]
and a sequence 7(n) of positive integers such that for :=0, 1, 2,
u)) converges uniformly to « and wy = f(x, 2y, uo, u}). Let w,
= F(2,(m) and wo=F(z,). Then ||w,—w|| < (—a)||trmy—u0|| which
approaches 0 as n approaches c. This is impossible, and hence F
must be continuous on B*. Then by the Schauder-Tychonoff fixed
point theorem there is a point z in B* such that z= F(z). This z is
a solution to (4).

If we were to let F(z) =w where w(x) = — [2u,(f)dt in the above
proof, we would get an existence theorem for a BVP of the type
Yy =f(x, v, ¥, ¥'"), ¥'(a) =y(b) =9'(b) =0 under the same conditions
as in Theorem 1.

COROLLARY. If the conditions of Theorem 1 are unchanged except
that (5) is replaced by (2641)6K’ exp(28K) = MK, the conclusion of
Theorem 1 is still valid.

Proor. Simply note that E(x) <x exp(2x) for any x>0.

3. The disconjugacy condition. The Cauchy function K(x, s) for
the equation L[y]=0 is defined as follows: for s in [a, b], y(x)
= K(x, 5) is the solution to the IVP L[y] =0, y(s) ='(s) =0, y"'(s) =1.

LEMMA. Let a, a1 and a, be continuous on [a, b]. Then L[y]=0 is
disconjugate on [a, b] if and only if K(x, s)>0 for each x and s in
[a, b] with x#s.

Proor. Clearly if L[y]=0 is disconjugate on [a, b], K(x, s) is
positive for xs. Let v be a solution to L[y]=0 with zeros at x; <x,
<x3in [a, b]. We shall show that K(x, s) >0 for x5 implies y=0 in
[a, b]. y(x) = crus(x) +cous(x) for all x in [a, 8], L{u;]=0 and «{?(x,)
=§,; (the Kronecker 8) for =1 and 2 and j=0, 1 and 2. But u,(x)
=K(x, x1), s0 uz(x) >0 for x=x;. Now y(x,) =y(x3) =0, so if ¢;0,
then (d/dx)[y(x)/us(x) ] = c1[u](x)us(x) —ur(x)up(x) ]/ [u2(x) ]2 has a
zero, say x*, in (xg, x3). Let h(x) =ui(x)us(x*) —u1(x*)uz(x). Then
L[r]=0, h(x;) =h(x*) =k (x*) =0. But A" (x*) 0 implies k(x) is a
nonzero multiple of K(x, x*), and hence h(x:) #0. Also A''(x*) =0
implies h(x) =0 for all x in [a, b], and then u;(x) = ua(x) 1 (x*) /us(x*)
which is impossible. This means that ¢; =0, and since y(x2) = coua(xs)
=0, ¢;=0 also. Thus y=0 in [a, b]. It is clear that any nontrivial
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solution having a double zero in [a, b] can have no other zero in
[a, b]. Thus L[y]=0 is disconjugate on [a, b].

THEOREM 2. L[y]=0 is disconjugate on [a, b] provided a.(x) £0,
each a; 1s continuous on [a, b] and

A3) 2k 4+ 1)CE(h4)/ A2 = 1
where 2h=b—a, A =max a,(x) %0 and C=max a,(x) over [a, b].
Proor. We shall show that the Cauchy function K (x, s) is positive

for x and s in [a, b] with x5%5. Let g be some continuous function on
[a, b]. Then given an M >0 by Theorem 1 the BVP

(8) Lyl =g 90 =@ =y@ =0

has a solution on the interval [¢, d] or [d, ¢] for any ¢5d in [a, b]
with |c—d| =28 provided (26+1)(CM+||gl|)E(54)/A2< M or

9) (26 + 1)CE(A)/4% < 1 — ||g| E(G4) (26 + 1)/ 42M.

Let ¢ and d satisfy ¢ £ ¢ <d <b, and let d — ¢ = 28. Then
(264+1)CE(84)/A% <1 since § <h. It follows that if g is defined by

g(x) = e[ao(®)(x — ¢)* + 3a1(x)(x — ¢)? + 6a:(x)(x — ¢) + 6]

and if €>0 is chosen sufficiently small, then (9) will hold. We con-
clude that (8) has a solution %(x) on [, ] for this g. From the initial
conditions it follows that

u(x) = c1K(x, ¢) + (x — ¢)3.

Then 4'(d) =aK'(d, ¢)+3(d—c)?=0 implies that K'(d, c¢) 0. Since
K" (¢, ¢)=1, it follows that K(x, ¢)>0 for ¢<x=b. Similarly, if
a<c=b, then K(x, ¢)>0 for a=x<c. It follows from the Lemma
that L[y]=0 is disconjugate on [a, b].

CoROLLARY 1. L[y]=0 is disconjugate on [a, b] provided ao, a, =<0
and a; are continuous on [a, b] and h(2h+1)C exp(2hA) /A £1 where
2h=b—a.

COROLLARY 2. If a2=0 on [a, b], then L{y]=0 is discongugate on
[a, b] provided a, and a1 <0 are continuous on [a, b] and 3k2(2h+1)C
<2.

Proor. Simply observe that limit,.oy E(hx)/x2=3hk2%/2.

It is known [2, Corollary of Theorem 7] that the second order
differential equation y"'4py’+gy=0 is disconjugate on [a, b] pro-
vided p and ¢ are continuous on [e, b] and ¢(x) <0 on [a, b]. Thus
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¥ 4a5y" +a1y’' =0 is disconjugate on [a, b] provided a; and a; <0
are continuous on [a, b]. Theorem 2 gives a type of continuity con-
dition for the disconjugacy of L[y]=0 with respect to a at a,=0. If
the interval [a, b] is fixed and @, and @, <0 are continuous on [a, b],
one can make the equation L[y]=0 disconjugate on [a, b] by choos-
ing ||@o|| small enough.
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