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1. Introduction. Under the above title Suryanarayan [2] published

a paper in which he discusses three-dimensional steady flows of in-

viscid magnetic fluids. The assumption is that the magnetic field is

along a fixed direction and the main goal is to investigate various

dynamical and kinematical relations connecting the characteristic

properties of the flow and the field quantities with the geometrical

parameters of the streamlines. Suryanarayan derives expressions for

the tangent, principal normal and binormal vectors, the curvature

and torsion of the streamlines in terms of the velocity components, of

the pressure, density of the medium and of the intensity of the mag-

netic field. He obtains the variations of the hydromagnetic pressure

along streamlines, along principal normals to the streamlines and

shows that this pressure remains constant along the binormals. A

special attention is paid to the Bernoulli function; if it exists then the

Bernoulli surfaces contain both the streamlines and vortex lines.

Suryanarayan finds that the Bernoulli surfaces exist in the case of

incompressible fluid and they form the surfaces on which the sum of

the fluid pressure, the kinetic energy and the magnetic energy is con-

stant. For an isentropic flow, the variation of the fluid pressure along

the streamline is expressed in terms of the Mach number, the mag-

netic field intensity, the fluid density and the magnitude of the fluid

velocity. As a particular case Suryanarayan obtains a class of helical

flows. But in his work Suryanarayan has made a tacit assumption

that the medium in question possesses the electrical resistivity equal

to zero or the electrical conductivity equal to infinity. On one side

this assumption results in a very idealistic case, on the other it re-

sults in a significant simplification of the equations of continuity, mo-

tion and of Maxwell's equations of fields. In the present note the

author shows that this tacit assumption is superfluous and the tech-

nique of Suryanarayan is applicable to a more general case with a

finite magnitude of the electrical resistivity. Below, the author fol-

lows precisely the paper of Suryanarayan [2] and gives only equa-

tions which differ from those in [2]. The reader is asked to have the

work [2] in front of himself during the reading of the present note.
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The left-hand numbers of equations refer to the numbers in Suryan-

arayan's paper, denoted by the symbol [S].

2. The equations. The first equation of Maxwell has the form

(/Z denotes resistivity)  [l]:

(S. 2.3) u'djHi - H'djm + HidjU' = p.dj(djHA, (2.1)

with all the other equations in [S] remaining in their original forms.

3. The basic decomposition. Equations (S.3.6), (S.3.11), (S.3.12),

(S.3.13) take the forms:

q(dH/ds)hi-H(dq/dh)si-Hq(dSi/dh)
(b. 3. o) (3.1)

+ hiH[(dq/ds) + qdjS'} = fidj(djH)hi,

(S.3.11)    hisi[d(Hq)/ds + qHdjS' - fidj(djH)] - H(dq/dh) = 0,   (3.2)

3 12)    h<nid(Hq)/ds A- qHdjS' - Jidj(djH)}

- Hqn^dsi/dh) = 0,

(S 3 13)    hibi^H^/ds + &**' ~ &&&} (3 4)

- Hqb^dsi/dh) = 0,

which contain the additional terms containing the factor p and repre-

sent the intrinsic formulation of the fundamental system. Attention

is called to the following misprints: (i) in (S.3.4) should be —^nhih'djH2

= 0; (ii) in (S.3.17) in the last term on the right-hand side there

should be   • • • A-Uj(d/ds)(dkP)}].

4. An intrinsic expression for the Bernoulli function. Here are no

changes, except possibly for a few misprints:

(S.4.1) • • • = - diP - hdiq2 + MB2).

(S.4.4) ... = ...+ f^p-i^p =  . • • + lq2p-^dip.

diB = - (1/p) Lf - iq2 (l - —) 6\pl.

(S.4.8)

2(dE/ds) = q*(l - —\(dp/ds).

(Kanwal)

1    dp            1        /Hn  dH \-=-— 6V*),
pq2   ds       (M2-l)\q2p    ds J

(notice the change in the sign).
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In the lemma below (S.4.8) should be " • • • if M=(2)1/2 and con-

versely." In (S.4.6) there is missing the symbol q:   ■ ■ ■ =q[bk • • ■ ].

5. Helical flows. As a particular case Suryanaraj'an [2] calculates

the helical flow in the cylindrical coordinates (r, d, z). The term con-

taining the resistivity causes the following change in (S.5.4):

r-1 sin P — iHq) + cos p — iHq) = p.V2H, (5.1)
dd dz

(S.5.4) V2 = r-^drirdrll) + r~2d2H/dd2, (5.1a)

pq2isin2 p/r) + dP/dr = 0, (5.2

with all the other equations remaining as in [S]. This system governs

the motion when the streamlines are helices. In the case the variable

functions are functions of r only, the governing equations become:

dP/dr + Pq2r~l sin2 /3 = 0,        P = p + \nE2, (5.3)

d2H/dr2 + r-HIl/dr = 0. (5.4)

For £ = 0, Equation (5.4) does not appear. This is due to the fact

that (5.1) vanishes identically. The above conditions give all the

helical flows with the flow and field parameters as functions of r. As a

special case consider [2], P = l+exp( — r), g2 = 2rp_I(exp( — r) (see

misprints in [2]), H = A In r+B, A, P=constants, which imply that

/3 = ir/4.
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