EQUATIONS IN FREE METABELIAN GROUPS

ROGER C. LYNDON ${ }^{1}$

Baumslag and Mahler [1] have shown that, for F a free group and hence $G=F / F^{\prime \prime}$ a free metabelian group, and p any prime, the relation $a^{p} b^{p}=c^{p}$ cannot hold for elements a, b, and c of G such that $a G^{\prime}$ and $b G^{\prime}$ are independent elements of the free abelian group G / G^{\prime}. In answer to a question they raised, we show by their methods that, if p, q, and r are three primes, not all the same, then there exist solutions of the equation $a^{p} b^{q}=c^{r}$ in G, with a and b independent modulo G^{\prime}.

We may suppose that $r \neq p, q$. If such a solution exists at all, one exists in G, free metabelian on two generators x and y, and such that, modulo $G^{\prime}, a \equiv x^{m r}, b \equiv y^{n r}$, and $c \equiv x^{m p} y^{n q}$, for some positive integers m and n. Let L be the ring of Laurent polynomials over the integers in x and y (that is, admitting both positive and negative integer exponents). Then G^{\prime} is naturally the free L module with generator $k=x^{-1} y^{-1} x y$, that is, with $u^{x}=x^{-1} u x, u^{y}=y^{-1} u y$, and $u^{A+B}=u^{A} u^{B}$, for all u in G^{\prime} and A, B in L. In this notation, we have

$$
a=x^{m r} k^{A}, \quad b=y^{n r} k^{B}, \quad \text { and } \quad c=x^{m p} y^{n q} k^{C}
$$

for certain elements A, B, and C of L. Let $\Gamma_{h}(z)$ be the cyclotomic polynomial with roots all primitive h th roots of unity. The condition $a^{p} b^{q}=c^{r}$ reduces by straightforward computation to the condition on A, B, and C that

$$
A \Gamma_{p}\left(x^{m r}\right) y^{n r}+B \Gamma_{q}\left(y^{n r}\right)=C \Gamma_{r}\left(x^{m p} y^{n q}\right)+D(x, y),
$$

where
$D(x, y)=\left(1+x+\cdots+x^{m p-1}\right)\left(1+y+\cdots+y^{n q-1}\right) x^{-m p} E\left(x^{m p}, y^{n q}\right)$, and

$$
E(u, v)=\sum_{i=0}^{r-1}(u v)^{i} \frac{u^{r-i}-1}{u-1} .
$$

Collecting terms in $X=x^{m}$ and $Y=y^{n}$ gives an equation

$$
A_{1} \Gamma_{p}\left(X^{r}\right) Y^{r}+B_{1} \Gamma_{q}\left(Y^{r}\right)=C_{1} \Gamma_{r}\left(X^{p} Y^{q}\right)+X^{-p} D_{1}(X, Y)
$$

where
${ }^{1}$ Work supported in part by a grant from the National Science Foundation.

$$
D_{1}(X, Y)=\Gamma_{p}(X) \Gamma_{q}(Y) E\left(X^{p}, Y^{q}\right) .
$$

It is easy to see that, conversely, the existence of a solution A_{1}, B_{1}, C_{1} of this last equation implies that of a solution of $a^{p} b^{q}=c^{r}$ with a and b independent modulo G^{\prime}.

It remains, then, to show that D_{1} belongs to the ideal in L generated by $\Gamma_{p}\left(X^{r}\right), \Gamma_{q}\left(Y^{r}\right)$, and $\Gamma_{r}\left(X^{p} Y^{q}\right)$. Since all elements concerned lie in the polynomial ring $Z[X, Y]$, this comes to showing that D_{1} belongs to the ideal J of this ring generated by the same three elements. Since $\Gamma_{p}\left(X^{r}\right)=\Gamma_{p r}(X) \Gamma_{p}(X)$, the ring $Z[X] / \Gamma_{p}\left(X^{r}\right)$ decomposes into $Z[X] / \Gamma_{p r}(X)$ and $Z[X] / \Gamma_{p}(X)$, and $Z[X, Y] / J$ decomposes correspondingly. Since $\Gamma_{p}(X)$ divides $D_{1}(X, Y)$, it suffices to consider the first component only. A similar argument for Y enables us to replace J by the ideal J_{1} generated by $\Gamma_{p r}(X), \Gamma_{q r}(Y)$, and $\Gamma_{r}\left(X^{p} Y^{q}\right)$.

We may identify $Z[X] / \Gamma_{p r}(X)$ with the ring $Z[\xi]$ where ξ is a primitive $p r$ th root of unity. Over this ring, $\Gamma_{q r}(Y)$ splits into factors $\left(Y^{q}-\omega\right) /(Y-\omega)$, where ω runs through the $r-1$ primitive r th roots of unity. Therefore $Z[X, Y]$ is a subdirect product of rings $Z[\xi, \eta]$ of algebraic integers, where ξ runs through the primitive $p r$ th roots of unity and η through the primitive $q r$ th roots of unity. We shall show that, in each such ring, $\gamma=\Gamma_{r}\left(\xi^{p} \eta^{q}\right)$ divides $\delta=\Gamma_{p}(\xi) \Gamma_{q}(\eta) E\left(\xi^{p}, \eta^{q}\right)^{\text {. }}$

Both $\omega=\xi^{p}$ and $\zeta=\eta^{q}$ are primitive r th roots, and we consider two cases, according as $\omega \zeta=1$ or not. If $\omega \zeta \neq 1$, then $\omega \zeta$ is a primitive r th root, whence we find that

$$
E(\omega, \zeta)=\sum_{0}^{r-1} \frac{\omega^{r} \zeta^{i}-(\omega \zeta)^{i}}{\omega-1}=\left(\sum \zeta^{i}-\sum(\omega \zeta)^{i}\right) /(\omega-1)=0
$$

that $\delta=0$, and so γ divides δ. Suppose henceforth that $\omega \zeta=1$. Then $\gamma=\Gamma_{r}(1)=r$, while

$$
E(\omega, \zeta)=\sum \frac{\omega^{-i}-1}{\omega-1}=\left(\sum \omega^{-i}-\sum 1\right) /(\omega-1)=-r /(\omega-1)
$$

and hence

$$
\delta=\Gamma_{p}(\xi) \Gamma_{q}(\eta) E(\omega, \zeta)=\frac{\omega-1}{\xi-1} \frac{\omega-1}{\eta-1} \frac{-r}{\omega-1}=-r \frac{\omega-1}{(\xi-1)(\eta-1)} .
$$

It suffices to show that $\xi-1$, and similarly $\eta-1$, are units. Since ξ has minimal polynomial

$$
\Gamma_{p r}(z)=\frac{z^{p r}-1}{z^{p}-1} / \frac{z^{r}-1}{z-1},
$$

the number $\xi-1$ has minimal polynomial $P(z)=\Gamma_{p r}(z+1)$, and hence norm $P(0)=\Gamma_{p r}(1)=1$, and is therefore a unit. This provides $U(X, Y)$ in $Z[X, Y]$ such that $D_{1}(\xi, \eta)=U(\xi, \eta) \Gamma_{r}\left(\xi^{p} \eta^{p}\right)$ holds for ξ and η as in the case last considered; it is easily checked that the same hold if ξ and η are any roots of $\Gamma_{p}\left(X^{r}\right)$ and $\Gamma_{q}\left(Y^{r}\right)$, whence it follows that this equation holds in $Z[X, Y] /\left(\Gamma_{p}\left(X^{r}\right), \Gamma_{q}\left(Y^{r}\right)\right)$, and that D_{1} is in J. This completes the proof.

Bibliography

1. Gilbert Baumslag and Kurt Mahler, Equations in free metabelian groups, Michigan Math J. 12 (1965), 417-420.

Queen Mary College, London and
University of Michigan

