ON POLYNOMIALS CHARACTERIZED BY A CERTAIN MEAN VALUE PROPERTY

LEOPOLD FLATTO

Let \lor denote the vector space of continuous real valued functions f(x) satisfying the mean value property

(1)
$$f(x) = \frac{1}{N} \sum_{i=1}^{N} f(x + iy_i)$$

for $x \in \mathbb{R}$, $0 < t < \epsilon_x$ (\mathbb{R} denotes an *n*-dimensional region; x and y_i are abbreviations for (x_1, \dots, x_n) , (y_{i1}, \dots, y_{in})). We assume that the y_i 's span E_n so that $1 \leq n \leq N$. We furthermore assume, without loss of generality, that y_1, \dots, y_n are linearly independent.

Friedman and Littman [5] have recently shown that \lor consists of polynomials of degrees $\leq N(N-1)/2$. This bound is actually attained when the y_i 's form the N vertices of an (N-1)-dimensional regular simplex [see 4, p. 264]. On the other hand it is known that for n=2, deg $f \leq N$ [see 4, Theorem 3.2]. The object of this paper is to obtain bounds on deg \lor and dim \lor , the bounds depending on N and n $(1 \leq n \leq N)$. We use the term deg \lor , to denote the maximum degree of the polynomials contained in \lor . We also characterize for fixed N and varying n $(1 \leq n \leq N)$ those configurations for which deg \lor and dim \lor attain their maximum.

THEOREM. We have

(2)
$$\deg \bigvee \leq \sum_{j=1}^{n} (N-j), \quad \dim \bigvee \leq \prod_{j=0}^{n-1} (N-j)$$

so that for fixed N and varying n $(1 \le n \le N)$

(3)
$$\deg \bigvee \leq \frac{N(N-1)}{2}, \quad \dim \bigvee \leq N!$$

The latter bounds are obtained if and only if

$$n = N$$
 or $n = N - 1$ and $\sum_{i=1}^{N} y_i = 0$.

REMARK. The bounds in (2) are not best possible. For instance, we have stated above that for n=2, deg $\bigvee \leq N$ and this bound is best

Received by the editors September 7, 1965.

possible. For fixed n and N the problem of determining the maximum values of deg \lor , dim \lor and the configurations for which these maximum values are attained remains open.

PROOF. We employ the following notation.

$$\frac{\partial}{\partial x} = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right), \quad x \cdot y = x_1 y_1 + \dots + x_n y_n,$$
$$P_k(x) = \sum_{i=1}^N (x \cdot y_i)^k \qquad (1 \le k < \infty).$$

It is shown in [5] that (1) is equivalent to the infinite system of homogeneous partial differential equations

(4)
$$P_k\left(\frac{\partial}{\partial x}\right)f = 0 \quad (1 \le k < \infty)$$

and that \lor , which is thus the solution space of (4), is a finite dimensional space consisting of polynomials. Let R denote the ring of polynomials in x_1, \dots, x_n with real coefficients and let \mathfrak{P} denote the ideal generated by the P_k 's $(1 \leq k < \infty)$. R, \mathfrak{P} , and \lor are vector spaces over the reals and it is known that R is the direct sum of \mathfrak{P} and \lor , i.e. $R = \mathfrak{P} \oplus \lor$ [see 2, p. 53]. Thus the vector spaces R/\mathfrak{P} and \lor are isomorphic $(R/\mathfrak{P} \cong \lor)$.

deg \lor and dim \lor will thus be determined if we know all the polynomials in \mathfrak{P} . We introduce the new variables $\xi_i = x \cdot y_i$ $(1 \leq i \leq N)$. Since the y_i 's $(1 \leq i \leq N)$ are linearly independent we must have $\xi_{n+k} = \sum_{i=1}^{n} a_{ki}\xi_i$ $(1 \leq k \leq N-n)$ for an appropriate choice of real a_{ki} 's. Let R' denote the ring of polynomials in ξ_1, \dots, ξ_n with real coefficients and let \mathfrak{P}' denote the ideal generated by the η_k 's where $\eta_k = \sum_{i=1}^{n} \xi_i^k$ $(1 \leq k \leq \infty)$. We adopt the following notation:

$$\xi = (\xi_1, \cdots, \xi_n), \ i = (i_1, \cdots, i_n), \qquad \xi_i^i = \xi_1^{i_1}, \cdots, \xi_n^{i_n}.$$

It is known [see 1, p. 41] that every polynomial $Q(\xi)$ can be expressed as

(5)
$$Q(\xi) = \sum' R_i \xi^i,$$

where the summation in \sum' extends over those *i*'s for which $0 \leq i_j \leq N-j$ $(1 \leq j \leq n)$ and R_i is a polynomial in η_1, \dots, η_N . This representation is unique for n = N. Let c_i denote the constant term in R_i and let $S_i = R_i - c_i$. Clearly $S_i \in \mathfrak{P}'$. It follows from (5) that $Q(\xi) = \sum' C_i \xi^i + \sum' S_i \xi^i$ so that

LEOPOLD FLATTO

(6)
$$Q(\xi) \equiv \sum' c_i \xi^i \pmod{\mathfrak{P}'}.$$

As there are $\prod_{j=0}^{n-1} (N-j)$ distinct ξ^{i} 's, (6) shows that dim $R'/\mathfrak{P}' \leq \prod_{j=0}^{n-1} (N-j)$. Since $\bigvee \cong R/\mathfrak{P} \cong R'/\mathfrak{P}'$ we have dim $\bigvee \leq \prod_{j=0}^{n-1} (N-j)$. It follows furthermore from (6) that if Q is homogeneous and deg $Q > \sum_{j=1}^{n} (N-j)$, then $Q \in \mathfrak{P}'$. This implies that if P(x) is homogeneous and deg $P > \sum_{j=1}^{n} (N-j)$ then $P \in \mathfrak{P}$. Thus deg $\bigvee \leq \sum_{j=1}^{n} (N-j)$.

If $n \leq N-2$, then we conclude from (2) that deg $\lor < N(N-1)/2$, dim $\lor < N!$. It remains to treat the two cases: (a) n = N, (b) n = N-1. In case (a) the ξ^{i} 's form a basis for R'/\mathfrak{P}' . For suppose that $\sum' c_i\xi^i \equiv 0 \pmod{\mathfrak{P}'}$ for some choice of real c_i 's. Then $\sum' c_i\xi^i = \sum_{j=1}^n T_j(\xi)\eta_j$ where the T_j 's are polynomials in ξ_1, \dots, ξ_n . But each T_j has a representation (5). I.e. $T_j(\xi) = \sum' R_{ji}(\eta)\xi^i$ where the R_{ji} 's are polynomials in η_1, \dots, η_n . Thus $\sum' c_i\xi^i = \sum_{j=1}^n \sum' R_j \eta_i\xi^i = \sum' (\sum_{j=1}^n R_j \eta_j)\xi^i$. Since the representation (5) is unique for n = N we have

(7)
$$c_i = \sum_{j=1}^n R_{ji}\eta_j.$$

The left side of (7) is void of η 's so that all R_{j_i} 's and c_i 's equal 0. Thus $\dim R'/\mathfrak{P}' = N!$ and since $\bigvee \cong R/\mathfrak{P} \cong R'/\mathfrak{P}'$, $\dim \lor = N!$. Now $\prod_{j=1}^{N-1} \xi_j^{N-j}$ has degree N(N-1)/2 and $\notin \mathfrak{P}'$. This implies that there exists a homogeneous polynomial of degree $N(N-1)/2 \notin \mathfrak{P}$. Hence deg $\bigvee = N(N-1)/2$.

If n = N-1 then we distinguish two cases. If $\sum_{i=1}^{N} y_i \neq 0$, then it follows from [1, Theorem 2.2] that there exists an orthogonal transformation x = Tx' such that g(x') = f(Tx') is independent of x_n' and satisfies the equation

(8)
$$g(x'_p) = \frac{1}{N} \sum_{i=1}^N g(x'_p + ty_{p,i}),$$

where $y_i = Ty'_i$, $x'_p = (x'_1, \dots, x'_{n-1})$, $y'_{pt} = (y'_{t1}, \dots, y'_{t,n-1})$. Let \bigvee' denote the solution space of (8). Clearly deg $\bigvee = \deg \bigvee'$, dim $\lor = \dim \bigvee'$. It follows from (2) that deg $\lor = \deg \lor' < N(N-1)/2$, dim $\lor = \dim \lor' < N!$. If $\sum_{i=1}^N y_i = 0$, then define

$$\bar{x} = (x_1, \cdots, x_n, x_{n+1}), y_i = (y_{i1}, \cdots, y_{in}, 1) \ (1 \le i \le N), F(\bar{x}) = f(x).$$

We notice that $\sum_{i=1}^{N} \bar{y}_i \neq 0$. It therefore follows from [3, Theorem 2.2] that \bigvee is identical with the solution space $\overline{\bigvee}$ of

(9)
$$F(\bar{x}) = \frac{1}{N} \sum_{i=1}^{N} F(\bar{x} + t\bar{y}_i).$$

Equation (9) is included in Case (a). It follows that deg $\bigvee = \deg \overline{\lor} = N(N-1)/2$, dim $\bigvee = \dim \overline{\lor} = N!$.

References

1. E. Artin, Lectures on Galois theory, Notre Dame Mathematical Lectures, Ann. Arbor, Michigan, 1944.

2. E. Fischer, Über Algebraische Modulsysteme und lineare homogene partiel Differentialgleichungen mit konstaten Koeffizienten, J. Reine Angew. Math. 140 (1911), 48-81.

3. L. Flatto, Functions with a mean value property, J. Math. Mech. 10 (1961), 11-18.

4. —, Functions with a mean value property. II, Amer. J. Math. 85 (1963), 248-270.

5. A. Friedman and W. Littman, Functions satisfying the mean value property, Trans. Amer. Math. Soc. 102 (1962), 167-180.

BELFER GRADUATE SCHOOL OF SCIENCES, YESHIVA UNIVERSITY