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Let V denote the vector space of continuous real valued functions

f(x) satisfying the mean value property

(i) /(*) = —E/(* + **)
A ,-=i

for xER, 0<t<ex (R denotes an «-dimensionaI region; x and yt are

abbreviations for (xi, • • • , x„), (yn, • • • , ytn))- We assume that the

y<'s span £„ so that I^m^JV. We furthermore assume, without loss

of generality, that yi, • • • , y« are linearly independent.

Friedman and Littman [5] have recently shown that V consists

of polynomials of degrees ^N(N—l)/2. This bound is actually at-

tained when the y,-'s form the N vertices of an (N— l)-dimensional

regular simplex [see 4, p. 264], On the other hand it is known that for

« = 2, deg f^N [see 4, Theorem 3.2]. The object of this paper is to

obtain bounds on deg V and dim V, the bounds depending on N

and n (l^n^N). We use the term deg V, to denote the maximum

degree of the polynomials contained in V- We also characterize for

fixed N and varying n (l^n^N) those configurations for which

deg V and dim V attain their maximum.

Theorem. We have

(2) deg V S Y (A -/),       dim V ^ fi (N - j)
j=l >=o

50 that for fixed N and varying n (l^n^N)

N(N - 1)
(3) deg V ^ —-1        dim V ^ A!    .

The latter bounds are obtained if and only if

N

n = N    or    n = N — I    and    Y y< = 0-

Remark. The bounds in (2) are not best possible. For instance, we

have stated above that for « = 2, deg V^A and this bound is best
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possible. For fixed n and N the problem of determining the maximum

values of deg V. dim V and the configurations for which these maxi-

mum values are attained remains open.

Proof. We employ the following notation.

d       ( d d \
— = I-> ■ • •  > -),    x-y = xiyi + • • ■ + xnyn,
dx       \dxi dxn/

Pkix) = Z (*■*)* (1 ^ * < «).
»=1

It is shown in [5] that (1) is equivalent to the infinite system of

homogeneous partial differential equations

(4) Pk{£)f=°        (1 = *<°°)

and that V. which is thus the solution space of (4), is a finite dimen-

sional space consisting of polynomials. Let R denote the ring of poly-

nomials in xi, • • • , xn with real coefficients and let *$ denote the ideal

generated by the Pk's il ^k<»). R, 'p, and V are vector spaces over

the reals and it is known that R is the direct sum of ty and V, i.e.

R = ^3 © V [see 2, p. 53]. Thus the vector spaces R/ty and V are iso-

morphic (-R/^V).

deg V and dim V will thus be determined if we know all the poly-

nomials in "JTj. We introduce the new variables |» = x-yf (1 i=i^N).

Since the y.'s (1 ^i^N) are linearly independent we must have

£«+* = Z"=i akih (1 =k ^N — n) for an appropriate choice of real ak/s.

Let R' denote the ring of polynomials in £i, • • • , £„ with real coeffi-

cients and let $' denote the ideal generated by the nks where r\k

= Z?=i I* (1 = ^ = °°)- We adopt the following notation:

I = (Ii, ' - - , l»), * = (*i> ' ' ■ , in),       I; = Ii, • • • , l»".

It is known [see 1, p. 41] that every polynomial ()(!) can be expressed

as

(5) Qit) = Z' *.!*",

where the summation in Z' extends over those i's for which Of^ij

1^N—j (1 ^sjfsn) and Rt is a polynomial in rji, ■ ■ ■ , r]N. This repre-

sentation is unique for n = N. Let c,- denote the constant term in Ri

and let S, = -R,—c(. Clearly SiEW- It follows from (5) that ()(£)

= zZ'C^+ Z' S£{ so that
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(6) Oft) - Y' eg (mod $')•

As there are n*«o (N-j) distinct fc's, (6) shows that dim R'/ty'

£ IB-S (N-j). Since V ^ K/¥ S-R'/T we have dim V
= IX"-o (N—j). It follows furthermore from (6) that if Q is homo-

geneous and deg Q> Yj-i (N— j), then QEW- This implies that if
P(x) is homogeneous and deg P> Yl=i (A— j) then PEty- Thus

deg V g E?-i (N-j).
If wgA-2, then we conclude from (2) that deg V <N(N—l)/2,

dim V <N\. It remains to treat the two cases: (a) n = N, (b) n = N— 1.

In case (a) the fc's form a basis for R'/ty'. For suppose that Y' c»'£*

= 0 (mod ^5') for some choice of real c/s. Then Y' c£i= E"=i Tj(£)t)j

where the F/s are polynomials in fc, • ■ • , fc. But each Tj has a repre-

sentation (5). I.e. Fjft) = Y' RjiWV where the Rj/s are polynomials

in vi, • • • , Vn. Thus £' c^«= EXi E' */<**'= E' (Ei-i *y<fc)F-
Since the representation (5) is unique for n = N we have

n

(7) C< =  X) RiWi-
i-l

The left side of (7) is void of 77's so that all Rji's and c,-'s equal 0. Thus

dimR'/<$' = N\ and since V£*R/$£iR'/ty, dimV=A!. Now

nf-7 $~3 has degree N(N-l)/2 and $y. This implies that there
exists a homogeneous polynomial of degree N(N— 1)/2(J;93. Hence

deg V= N(N-l)/2.
If n = N— 1 then we distinguish two cases. If Ef-i y»'^0> then

it follows from [l, Theorem 2.2] that there exists an orthogonal

transformation x = Tx' such that g(x') =/(Fx') is independent of x„'

and satisfies the equation

1   N
(8) gfe') = — Y g(*P + tyPfi),

N *_i

where y{=Ty!, xp' =(x{, ■ ■ ■ , xn'_i), ?£«=(?«, • • • , y4',n-i). Let

V' denote the solution space of (8). Clearly deg V =deg V', dim V

= dim V". It follows from (2) that deg V =deg V'<A(A-l)/2,
dim V=dim V'<A!. If Yf-i yi = °> then define

x = (xh ■ • ■ ,xn, xn+i), yt = (yn, ■ ■ ■ , yin, 1) (1 ^ t g A), F(x) =/(x).

We notice that E*^i y«'^0- It therefore follows from [3, Theorem

2.2] that V is identical with the solution space V of

(9) f(x) = -Yn* + tyt).
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Equation (9) is included in Case (a). It follows that deg V =deg V

= NiN-l)/2, dim \/ = dim \/=N\.
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