IDEALS GENERATED BY PRODUCTS

A. P. Hillman, D. G. MEAD, K. B. O'KEEFE ${ }^{1}$ AND E. S. O'KEEFE

In [1] Levi obtained results on the structure of the differential ideals $\left[y^{n}\right]$ and $[u v]$ and applied these results to the component theory of differential polynomials. The present paper uses Levi's methods to extend his main results on [uv] to $\left[y_{1} y_{2} \cdots y_{n}\right.$]. Since the y_{i} are independent indeterminates, $\left[y_{1} \cdots y_{n}\right]$ is related to $\left[y^{n}\right]$ but is not quite a generalization. The results are motivated by and apply to differential algebra; however, we follow Levi's suggestion at the close of [1] in stating them in the more general form in which $y_{i j}$ is not necessarily a derivative of y_{i}.

Let $y_{i j}(i=1, \cdots, n$ and $j=0,1, \cdots)$ be a set of independent indeterminates over a field F and let R be the polynomial ring in the $y_{i j}$ over F. The signature of a monomial M in R is $D=\left(d_{1}, \cdots, d_{n}\right)$ if M has degree d_{h} in the $y_{i j}$ with $i=h$. The weight of M is the sum of the j 's for the factors $y_{i j}$ of M. A polynomial of R is homogeneous with signature D if each of its terms has this signature; it is isobaric of weight w if each term has weight w.

For $j=0,1, \cdots$ let x_{j} be a linear combination, with nonzero coefficients in F, of all the products $y_{1 j_{1}} y_{2 j_{2}} \cdots y_{n j_{n}}$ of weight j. Let I_{t} be the ideal $\left(x_{0}, x_{1}, \cdots, x_{t}\right)$ in R. Let $I=\left(x_{0}, x_{1}, \cdots\right)$ and let Q be the quotient ring of R modulo I. Below we describe functions $f(D)$ and $g(D)$ such that a monomial with signature D and weight w is in I_{t} if $w<f(D)$ and $t \geqq g(D)$ and such that for every D and $w \geqq f(D)$ there is a monomial with signature D and weight w that is not in I.
2. Levi bases. In the case $n=2$, Levi obtained the following bases for Q and R as vector spaces over F. Let $u_{j}=y_{1 j}$ and $v_{j}=y_{2 j}$. A product

$$
\begin{align*}
P= & u_{i_{1}} \cdots u_{i_{r}} v_{j_{1}} \cdots v_{j_{e}} \\
& \quad\left(i_{1} \leqq i_{2} \leqq \cdots \leqq i_{r}, j_{1} \leqq j_{2} \leqq \cdots \leqq j_{s}\right) \tag{1}
\end{align*}
$$

of signature (r, s) is an α term if $s=0$ or $j_{1} \geqq r$ and a β term otherwise. $A \lambda$ term is of the form $A X$ with A an α term and X a power product in the x_{j}. (X may be 1 ; thus the λ terms include Levi's α and γ terms.) Levi showed that the α terms are a basis for Q and the λ terms for R.

Let P^{\prime} be a factor of P in (1) selected as follows. If P is an α term,

[^0]$P^{\prime}=P$. If P is a β term, let $e=j_{1}+1, S=u_{i_{e}} v_{j}$, and $P^{\prime}=P / S$. Let P_{i} be defined by $P_{0}=P$ and $P_{i+1}=P_{i}^{\prime}$. Let $\theta(P)$ be the expression for P in the form $A S_{1} \cdots S_{a}$ where a is the first i for which P_{i} is an α term, $A=P_{a}$, and $S_{i}=P_{i} / P_{i-1}$. The weight h_{i} of S_{i} satisfies $h_{1} \leqq h_{2}$ $\leqq \cdots \leqq h_{a}$. Let $\lambda(P)=A x_{h_{1}} \cdots x_{h_{a}}$. Levi showed that $P \rightarrow \lambda(P)$ is a 1-1 mapping of the set of all power products in the u_{j} and v_{j} onto the set of all λ terms.
3. Extension to general n. Let $P=Y_{1} Y_{2} \cdots Y_{n}$ where Y_{k} is a power product in the $y_{i j}$ with $i=k$. For $2 \leqq k \leqq n$ we inductively define α_{k} terms in the $y_{1 j}, \cdots, y_{k j}$ and an expression θ_{k} for $Y_{1} \cdots Y_{k}$. When $k=2, \alpha_{2}$ terms and $\theta_{2}=\theta\left(Y_{1} Y_{2}\right)$ are defined as in the previous section with $y_{1 j}$ in the role of u_{j} and $y_{2 j}$ in that of v_{j}. We assume the definition of α_{m} terms and of $Y_{1} \cdots Y_{m}$ in the form $\theta_{m}=A_{m} S_{m 1} \cdots S_{m b}$ where A_{m} is an α_{m} term and $S_{m j}$ has signature $(1, \cdots, 1,0, \cdots, 0)$, with m ones, and weight $h_{m j}$ satisfying $h_{m 1} \leqq h_{m 2} \leqq \cdots \leqq h_{m b}$. Thinking of $S_{m j}$ as u_{j} and $y_{m+1, j}$ as v_{j}, let $\theta\left(S_{m 1} \cdots S_{m b} Y_{m+1}\right)=A^{*} S_{m+1,1} \cdots S_{m+1, c}$. We then define θ_{m+1} to be
\[

$$
\begin{equation*}
A_{m+1} S_{m+1,1} \cdots S_{m+1, c} \tag{2}
\end{equation*}
$$

\]

where $A_{m+1}=A_{m} A^{*}$. The power product $Y_{1} \cdots Y_{m+1}$ is defined to be an α_{m+1} term if c in (2) is zero, i.e., if $Y_{1} \cdots Y_{m+1}=A_{m+1}$.

As before a λ term is of the form $A X$ with A an α (i.e., α_{n}) term and X a power product in the x_{j}. Let $\theta(P)=\theta_{n}=A S_{1} \cdots S_{c}$ with A an α term and S_{j} of weight h_{j} satisfying $h_{1} \leqq \cdots \leqq h_{c}$ and let $\lambda(P)=A x_{h_{1}} \cdots x_{h_{c}}$. The following outline of the process of showing that the α terms are a basis for Q and the λ terms for R is essentially as in Levi's work:

Since $x_{h_{1}}$ is a linear combination of power products one of which is $S_{1},\left(P / S_{1}\right) x_{h_{1}} \equiv 0(\bmod I)$ can be solved as

$$
\begin{equation*}
P \equiv f_{1} N_{1}+\cdots+f_{s} N_{s}(\bmod I) \tag{3}
\end{equation*}
$$

where the f_{i} are in F and the N_{i} are power products in the $y_{i j}$. Any N in (3) which is not an α term can be replaced by an expression (3) in which N plays the role of P. Continuing the process, one ends in a finite number of steps with P congruent to a linear combination of α terms of the same signature and weight as P. Thus the α terms generate Q. It follows from the process of obtaining the θ_{k} and the 1-1 character of $P \rightarrow \lambda(P)$ in the case $n=2$ that, in the case of general $n, P \rightarrow \lambda(P)$ is a 1-1 mapping of the set of power products in the $y_{i j}$ onto the set of λ terms. This establishes that the λ terms are a basis for R. Then the α terms are linearly independent modulo I and form a basis for Q.

The function $f(D)$ is the minimum of the weights of monomials with signature D that are not in I; hence $f(D)$ is the minimum of the weights of the α terms with signature D. An α term A is of the form $A_{n-1} A^{*}$ where A_{n-1} is an α_{n-1} term and A^{*} is an α_{2} term in the $S_{n-1, j}$ and the $y_{n j}$. If $D=\left(d_{1}, \cdots, d_{n}\right)$ and A^{*} is of degree t in the S 's, the weight of A is at least

$$
\begin{equation*}
f\left(d_{1}-t, \cdots, d_{n-1}-t\right)+t d_{n} \tag{4}
\end{equation*}
$$

and is (4) if A_{n-1} is an α_{n-1} term of minimal weight for its signature and $Y_{n}=\left(y_{n t}\right)^{d_{n}}$. Hence $f(D)$ is the minimum of (4) for $0 \leqq t \leqq$ $\min \left(d_{1}, \cdots, d_{n-1}\right)$.

There are other ways of defining a basis for Q. Although the basis may be different, the function $f(D)$ does not depend on the basis. One such alternative shows that

$$
\begin{align*}
f(D)=\min \left[f \left(d_{1}-r,\right.\right. & \left.\cdots, d_{a}-r\right)+f\left(d_{a+1}-s, \cdots, d_{b}-s\right)+\cdots \tag{5}\\
& \left.+f\left(d_{c+1}-t, \cdots, d_{n}-t\right)+f(r, s, \cdots, t)\right]
\end{align*}
$$

where r, s, \cdots, t range over all nonnegative integers such that the arguments in (5) are nonnegative.

It will be shown in another paper that $f(D)$ may be evaluated explicitly as follows. We assume without loss of generality that $d_{1} \leqq d_{2}$ $\leqq \cdots \leqq d_{n}$. For $2 \leqq i \leqq n$ let $q_{i}=\left(d_{1}+\cdots+d_{i}\right) /(i-1)$ and let k be the smallest i for which q_{i} assumes its minimum. Let q and r be integers defined by $d_{1}+\cdots+d_{k}=(k-1) q+r$ and $0 \leqq r<k-1$. Let $c_{i}=q-d_{i}$ for $i=1, \cdots, k$ Let $\sigma_{1}=c_{1}+\cdots+c_{k}$ and $\sigma_{2}=\sum_{i<j} c_{i} c_{j}$. Then $f(D)=\sigma_{2}+r \sigma_{1}+[(r+1) r / 2]$.

It is easily seen from Levi's process that $g\left(d_{1}, d_{2}\right)$ may be chosen as $d_{1}+d_{2}-2$. This and the process described above show that $g\left(d_{1}, \cdots, d_{n}\right)$ may be chosen as

$$
d_{n}+\min \left(d_{1}, \cdots, d_{n-1}\right)-2
$$

Using the symmetry of the ideal I_{t} in the subscripts i of the $y_{i j}$, this may be improved to $g(D)=\min _{i \neq j}\left(d_{i}+d_{j}\right)-2$.

References

1. Howard Levi, On the structure of differential polynomials and on their theory of ideals, Trans. Amer. Math. Soc. 51 (1942), 532-568.
2. A. P. Hillman, D. G. Mead, K. B. O'Keefe and E. S. O'Keefe, A dynamic programming generalization of $x y$ to n variables, Proc. Amer. Math. Soc. 17 (1966), 718-721.

[^0]: Received by the editors April 3, 1965.
 ${ }^{1}$ The work on this paper by one of the authors was supported by a grant from the American Association of University Women.

